Whakaoti mō x
x=7\sqrt{51}+50\approx 99.989999
x=50-7\sqrt{51}\approx 0.010001
Graph
Tohaina
Kua tāruatia ki te papatopenga
xx+1=100x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+1=100x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+1-100x=0
Tangohia te 100x mai i ngā taha e rua.
x^{2}-100x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -100 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4}}{2}
Pūrua -100.
x=\frac{-\left(-100\right)±\sqrt{9996}}{2}
Tāpiri 10000 ki te -4.
x=\frac{-\left(-100\right)±14\sqrt{51}}{2}
Tuhia te pūtakerua o te 9996.
x=\frac{100±14\sqrt{51}}{2}
Ko te tauaro o -100 ko 100.
x=\frac{14\sqrt{51}+100}{2}
Nā, me whakaoti te whārite x=\frac{100±14\sqrt{51}}{2} ina he tāpiri te ±. Tāpiri 100 ki te 14\sqrt{51}.
x=7\sqrt{51}+50
Whakawehe 100+14\sqrt{51} ki te 2.
x=\frac{100-14\sqrt{51}}{2}
Nā, me whakaoti te whārite x=\frac{100±14\sqrt{51}}{2} ina he tango te ±. Tango 14\sqrt{51} mai i 100.
x=50-7\sqrt{51}
Whakawehe 100-14\sqrt{51} ki te 2.
x=7\sqrt{51}+50 x=50-7\sqrt{51}
Kua oti te whārite te whakatau.
xx+1=100x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+1=100x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+1-100x=0
Tangohia te 100x mai i ngā taha e rua.
x^{2}-100x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-100x+\left(-50\right)^{2}=-1+\left(-50\right)^{2}
Whakawehea te -100, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -50. Nā, tāpiria te pūrua o te -50 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-100x+2500=-1+2500
Pūrua -50.
x^{2}-100x+2500=2499
Tāpiri -1 ki te 2500.
\left(x-50\right)^{2}=2499
Tauwehea x^{2}-100x+2500. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2499}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-50=7\sqrt{51} x-50=-7\sqrt{51}
Whakarūnātia.
x=7\sqrt{51}+50 x=50-7\sqrt{51}
Me tāpiri 50 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}