Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=4 ab=1\times 3=3
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}+x\right)+\left(3x+3\right)
Tuhia anō te x^{2}+4x+3 hei \left(x^{2}+x\right)+\left(3x+3\right).
x\left(x+1\right)+3\left(x+1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x+1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}+4x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\times 3}}{2}
Pūrua 4.
x=\frac{-4±\sqrt{16-12}}{2}
Whakareatia -4 ki te 3.
x=\frac{-4±\sqrt{4}}{2}
Tāpiri 16 ki te -12.
x=\frac{-4±2}{2}
Tuhia te pūtakerua o te 4.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-4±2}{2} ina he tāpiri te ±. Tāpiri -4 ki te 2.
x=-1
Whakawehe -2 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-4±2}{2} ina he tango te ±. Tango 2 mai i -4.
x=-3
Whakawehe -6 ki te 2.
x^{2}+4x+3=\left(x-\left(-1\right)\right)\left(x-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -3 mō te x_{2}.
x^{2}+4x+3=\left(x+1\right)\left(x+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.