Whakaoti mō t (complex solution)
\left\{\begin{matrix}t=\frac{xy+wy+y-w}{x^{2}}\text{, }&x\neq 0\\t\in \mathrm{C}\text{, }&w=\frac{y}{1-y}\text{ and }y\neq 1\text{ and }x=0\end{matrix}\right.
Whakaoti mō w (complex solution)
\left\{\begin{matrix}w=-\frac{tx^{2}-xy-y}{1-y}\text{, }&y\neq 1\\w\in \mathrm{C}\text{, }&\left(x=\frac{-\sqrt{4t+1}+1}{2t}\text{ and }y=1\text{ and }t\neq 0\right)\text{ or }\left(x=\frac{\sqrt{4t+1}+1}{2t}\text{ and }y=1\text{ and }t\neq 0\right)\text{ or }\left(t=0\text{ and }y=1\text{ and }x=-1\right)\end{matrix}\right.
Whakaoti mō t
\left\{\begin{matrix}t=\frac{xy+wy+y-w}{x^{2}}\text{, }&x\neq 0\\t\in \mathrm{R}\text{, }&w=\frac{y}{1-y}\text{ and }y\neq 1\text{ and }x=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
w-\left(xy-tx^{2}\right)=\left(w+1\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te y-tx.
w-xy+tx^{2}=\left(w+1\right)y
Hei kimi i te tauaro o xy-tx^{2}, kimihia te tauaro o ia taurangi.
w-xy+tx^{2}=wy+y
Whakamahia te āhuatanga tohatoha hei whakarea te w+1 ki te y.
-xy+tx^{2}=wy+y-w
Tangohia te w mai i ngā taha e rua.
tx^{2}=wy+y-w+xy
Me tāpiri te xy ki ngā taha e rua.
x^{2}t=xy+wy+y-w
He hanga arowhānui tō te whārite.
\frac{x^{2}t}{x^{2}}=\frac{xy+wy+y-w}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}.
t=\frac{xy+wy+y-w}{x^{2}}
Mā te whakawehe ki te x^{2} ka wetekia te whakareanga ki te x^{2}.
w-\left(xy-tx^{2}\right)=\left(w+1\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te y-tx.
w-xy+tx^{2}=\left(w+1\right)y
Hei kimi i te tauaro o xy-tx^{2}, kimihia te tauaro o ia taurangi.
w-xy+tx^{2}=wy+y
Whakamahia te āhuatanga tohatoha hei whakarea te w+1 ki te y.
w-xy+tx^{2}-wy=y
Tangohia te wy mai i ngā taha e rua.
w+tx^{2}-wy=y+xy
Me tāpiri te xy ki ngā taha e rua.
w-wy=y+xy-tx^{2}
Tangohia te tx^{2} mai i ngā taha e rua.
-wy+w=-tx^{2}+xy+y
Whakaraupapatia anō ngā kīanga tau.
\left(-y+1\right)w=-tx^{2}+xy+y
Pahekotia ngā kīanga tau katoa e whai ana i te w.
\left(1-y\right)w=y+xy-tx^{2}
He hanga arowhānui tō te whārite.
\frac{\left(1-y\right)w}{1-y}=\frac{y+xy-tx^{2}}{1-y}
Whakawehea ngā taha e rua ki te -y+1.
w=\frac{y+xy-tx^{2}}{1-y}
Mā te whakawehe ki te -y+1 ka wetekia te whakareanga ki te -y+1.
w-\left(xy-tx^{2}\right)=\left(w+1\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te y-tx.
w-xy+tx^{2}=\left(w+1\right)y
Hei kimi i te tauaro o xy-tx^{2}, kimihia te tauaro o ia taurangi.
w-xy+tx^{2}=wy+y
Whakamahia te āhuatanga tohatoha hei whakarea te w+1 ki te y.
-xy+tx^{2}=wy+y-w
Tangohia te w mai i ngā taha e rua.
tx^{2}=wy+y-w+xy
Me tāpiri te xy ki ngā taha e rua.
x^{2}t=xy+wy+y-w
He hanga arowhānui tō te whārite.
\frac{x^{2}t}{x^{2}}=\frac{xy+wy+y-w}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}.
t=\frac{xy+wy+y-w}{x^{2}}
Mā te whakawehe ki te x^{2} ka wetekia te whakareanga ki te x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}