Whakaoti mō H
\left\{\begin{matrix}H=\frac{dw}{Tr}\text{, }&T\neq 0\text{ and }r\neq 0\\H\in \mathrm{R}\text{, }&\left(w=0\text{ and }T=0\right)\text{ or }\left(d=0\text{ and }T=0\right)\text{ or }\left(d=0\text{ and }r=0\text{ and }T\neq 0\right)\text{ or }\left(w=0\text{ and }r=0\text{ and }T\neq 0\right)\end{matrix}\right.
Whakaoti mō T
\left\{\begin{matrix}T=\frac{dw}{Hr}\text{, }&H\neq 0\text{ and }r\neq 0\\T\in \mathrm{R}\text{, }&\left(w=0\text{ and }H=0\right)\text{ or }\left(d=0\text{ and }H=0\right)\text{ or }\left(d=0\text{ and }r=0\text{ and }H\neq 0\right)\text{ or }\left(w=0\text{ and }r=0\text{ and }H\neq 0\right)\end{matrix}\right.
Pātaitai
Linear Equation
w d = r T H
Tohaina
Kua tāruatia ki te papatopenga
rTH=wd
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
TrH=dw
He hanga arowhānui tō te whārite.
\frac{TrH}{Tr}=\frac{dw}{Tr}
Whakawehea ngā taha e rua ki te rT.
H=\frac{dw}{Tr}
Mā te whakawehe ki te rT ka wetekia te whakareanga ki te rT.
rTH=wd
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
HrT=dw
He hanga arowhānui tō te whārite.
\frac{HrT}{Hr}=\frac{dw}{Hr}
Whakawehea ngā taha e rua ki te rH.
T=\frac{dw}{Hr}
Mā te whakawehe ki te rH ka wetekia te whakareanga ki te rH.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}