Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-9 ab=1\times 14=14
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei w^{2}+aw+bw+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-14 -2,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
-1-14=-15 -2-7=-9
Tātaihia te tapeke mō ia takirua.
a=-7 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(w^{2}-7w\right)+\left(-2w+14\right)
Tuhia anō te w^{2}-9w+14 hei \left(w^{2}-7w\right)+\left(-2w+14\right).
w\left(w-7\right)-2\left(w-7\right)
Tauwehea te w i te tuatahi me te -2 i te rōpū tuarua.
\left(w-7\right)\left(w-2\right)
Whakatauwehea atu te kīanga pātahi w-7 mā te whakamahi i te āhuatanga tātai tohatoha.
w^{2}-9w+14=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
Pūrua -9.
w=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
Whakareatia -4 ki te 14.
w=\frac{-\left(-9\right)±\sqrt{25}}{2}
Tāpiri 81 ki te -56.
w=\frac{-\left(-9\right)±5}{2}
Tuhia te pūtakerua o te 25.
w=\frac{9±5}{2}
Ko te tauaro o -9 ko 9.
w=\frac{14}{2}
Nā, me whakaoti te whārite w=\frac{9±5}{2} ina he tāpiri te ±. Tāpiri 9 ki te 5.
w=7
Whakawehe 14 ki te 2.
w=\frac{4}{2}
Nā, me whakaoti te whārite w=\frac{9±5}{2} ina he tango te ±. Tango 5 mai i 9.
w=2
Whakawehe 4 ki te 2.
w^{2}-9w+14=\left(w-7\right)\left(w-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te 2 mō te x_{2}.