Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-8 ab=1\left(-48\right)=-48
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei w^{2}+aw+bw-48. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=4
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(w^{2}-12w\right)+\left(4w-48\right)
Tuhia anō te w^{2}-8w-48 hei \left(w^{2}-12w\right)+\left(4w-48\right).
w\left(w-12\right)+4\left(w-12\right)
Tauwehea te w i te tuatahi me te 4 i te rōpū tuarua.
\left(w-12\right)\left(w+4\right)
Whakatauwehea atu te kīanga pātahi w-12 mā te whakamahi i te āhuatanga tātai tohatoha.
w^{2}-8w-48=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-48\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-8\right)±\sqrt{64-4\left(-48\right)}}{2}
Pūrua -8.
w=\frac{-\left(-8\right)±\sqrt{64+192}}{2}
Whakareatia -4 ki te -48.
w=\frac{-\left(-8\right)±\sqrt{256}}{2}
Tāpiri 64 ki te 192.
w=\frac{-\left(-8\right)±16}{2}
Tuhia te pūtakerua o te 256.
w=\frac{8±16}{2}
Ko te tauaro o -8 ko 8.
w=\frac{24}{2}
Nā, me whakaoti te whārite w=\frac{8±16}{2} ina he tāpiri te ±. Tāpiri 8 ki te 16.
w=12
Whakawehe 24 ki te 2.
w=-\frac{8}{2}
Nā, me whakaoti te whārite w=\frac{8±16}{2} ina he tango te ±. Tango 16 mai i 8.
w=-4
Whakawehe -8 ki te 2.
w^{2}-8w-48=\left(w-12\right)\left(w-\left(-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 12 mō te x_{1} me te -4 mō te x_{2}.
w^{2}-8w-48=\left(w-12\right)\left(w+4\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.