Whakaoti mō w
w=5
w=6
Tohaina
Kua tāruatia ki te papatopenga
a+b=-11 ab=30
Hei whakaoti i te whārite, whakatauwehea te w^{2}-11w+30 mā te whakamahi i te tātai w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-30 -2,-15 -3,-10 -5,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Tātaihia te tapeke mō ia takirua.
a=-6 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(w-6\right)\left(w-5\right)
Me tuhi anō te kīanga whakatauwehe \left(w+a\right)\left(w+b\right) mā ngā uara i tātaihia.
w=6 w=5
Hei kimi otinga whārite, me whakaoti te w-6=0 me te w-5=0.
a+b=-11 ab=1\times 30=30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei w^{2}+aw+bw+30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-30 -2,-15 -3,-10 -5,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Tātaihia te tapeke mō ia takirua.
a=-6 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(w^{2}-6w\right)+\left(-5w+30\right)
Tuhia anō te w^{2}-11w+30 hei \left(w^{2}-6w\right)+\left(-5w+30\right).
w\left(w-6\right)-5\left(w-6\right)
Tauwehea te w i te tuatahi me te -5 i te rōpū tuarua.
\left(w-6\right)\left(w-5\right)
Whakatauwehea atu te kīanga pātahi w-6 mā te whakamahi i te āhuatanga tātai tohatoha.
w=6 w=5
Hei kimi otinga whārite, me whakaoti te w-6=0 me te w-5=0.
w^{2}-11w+30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 30}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-11\right)±\sqrt{121-4\times 30}}{2}
Pūrua -11.
w=\frac{-\left(-11\right)±\sqrt{121-120}}{2}
Whakareatia -4 ki te 30.
w=\frac{-\left(-11\right)±\sqrt{1}}{2}
Tāpiri 121 ki te -120.
w=\frac{-\left(-11\right)±1}{2}
Tuhia te pūtakerua o te 1.
w=\frac{11±1}{2}
Ko te tauaro o -11 ko 11.
w=\frac{12}{2}
Nā, me whakaoti te whārite w=\frac{11±1}{2} ina he tāpiri te ±. Tāpiri 11 ki te 1.
w=6
Whakawehe 12 ki te 2.
w=\frac{10}{2}
Nā, me whakaoti te whārite w=\frac{11±1}{2} ina he tango te ±. Tango 1 mai i 11.
w=5
Whakawehe 10 ki te 2.
w=6 w=5
Kua oti te whārite te whakatau.
w^{2}-11w+30=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
w^{2}-11w+30-30=-30
Me tango 30 mai i ngā taha e rua o te whārite.
w^{2}-11w=-30
Mā te tango i te 30 i a ia ake anō ka toe ko te 0.
w^{2}-11w+\left(-\frac{11}{2}\right)^{2}=-30+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-11w+\frac{121}{4}=-30+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}-11w+\frac{121}{4}=\frac{1}{4}
Tāpiri -30 ki te \frac{121}{4}.
\left(w-\frac{11}{2}\right)^{2}=\frac{1}{4}
Tauwehea w^{2}-11w+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{11}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-\frac{11}{2}=\frac{1}{2} w-\frac{11}{2}=-\frac{1}{2}
Whakarūnātia.
w=6 w=5
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}