Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-11 ab=1\times 28=28
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei w^{2}+aw+bw+28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-28 -2,-14 -4,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 28.
-1-28=-29 -2-14=-16 -4-7=-11
Tātaihia te tapeke mō ia takirua.
a=-7 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(w^{2}-7w\right)+\left(-4w+28\right)
Tuhia anō te w^{2}-11w+28 hei \left(w^{2}-7w\right)+\left(-4w+28\right).
w\left(w-7\right)-4\left(w-7\right)
Tauwehea te w i te tuatahi me te -4 i te rōpū tuarua.
\left(w-7\right)\left(w-4\right)
Whakatauwehea atu te kīanga pātahi w-7 mā te whakamahi i te āhuatanga tātai tohatoha.
w^{2}-11w+28=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 28}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-11\right)±\sqrt{121-4\times 28}}{2}
Pūrua -11.
w=\frac{-\left(-11\right)±\sqrt{121-112}}{2}
Whakareatia -4 ki te 28.
w=\frac{-\left(-11\right)±\sqrt{9}}{2}
Tāpiri 121 ki te -112.
w=\frac{-\left(-11\right)±3}{2}
Tuhia te pūtakerua o te 9.
w=\frac{11±3}{2}
Ko te tauaro o -11 ko 11.
w=\frac{14}{2}
Nā, me whakaoti te whārite w=\frac{11±3}{2} ina he tāpiri te ±. Tāpiri 11 ki te 3.
w=7
Whakawehe 14 ki te 2.
w=\frac{8}{2}
Nā, me whakaoti te whārite w=\frac{11±3}{2} ina he tango te ±. Tango 3 mai i 11.
w=4
Whakawehe 8 ki te 2.
w^{2}-11w+28=\left(w-7\right)\left(w-4\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te 4 mō te x_{2}.