Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

w^{2}-10w=0
Tangohia te 10w mai i ngā taha e rua.
w\left(w-10\right)=0
Tauwehea te w.
w=0 w=10
Hei kimi otinga whārite, me whakaoti te w=0 me te w-10=0.
w^{2}-10w=0
Tangohia te 10w mai i ngā taha e rua.
w=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-10\right)±10}{2}
Tuhia te pūtakerua o te \left(-10\right)^{2}.
w=\frac{10±10}{2}
Ko te tauaro o -10 ko 10.
w=\frac{20}{2}
Nā, me whakaoti te whārite w=\frac{10±10}{2} ina he tāpiri te ±. Tāpiri 10 ki te 10.
w=10
Whakawehe 20 ki te 2.
w=\frac{0}{2}
Nā, me whakaoti te whārite w=\frac{10±10}{2} ina he tango te ±. Tango 10 mai i 10.
w=0
Whakawehe 0 ki te 2.
w=10 w=0
Kua oti te whārite te whakatau.
w^{2}-10w=0
Tangohia te 10w mai i ngā taha e rua.
w^{2}-10w+\left(-5\right)^{2}=\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-10w+25=25
Pūrua -5.
\left(w-5\right)^{2}=25
Tauwehea w^{2}-10w+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-5\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-5=5 w-5=-5
Whakarūnātia.
w=10 w=0
Me tāpiri 5 ki ngā taha e rua o te whārite.