Whakaoti mō w
w=-5
w=2
Tohaina
Kua tāruatia ki te papatopenga
a+b=3 ab=-10
Hei whakaoti i te whārite, whakatauwehea te w^{2}+3w-10 mā te whakamahi i te tātai w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(w-2\right)\left(w+5\right)
Me tuhi anō te kīanga whakatauwehe \left(w+a\right)\left(w+b\right) mā ngā uara i tātaihia.
w=2 w=-5
Hei kimi otinga whārite, me whakaoti te w-2=0 me te w+5=0.
a+b=3 ab=1\left(-10\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei w^{2}+aw+bw-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(w^{2}-2w\right)+\left(5w-10\right)
Tuhia anō te w^{2}+3w-10 hei \left(w^{2}-2w\right)+\left(5w-10\right).
w\left(w-2\right)+5\left(w-2\right)
Tauwehea te w i te tuatahi me te 5 i te rōpū tuarua.
\left(w-2\right)\left(w+5\right)
Whakatauwehea atu te kīanga pātahi w-2 mā te whakamahi i te āhuatanga tātai tohatoha.
w=2 w=-5
Hei kimi otinga whārite, me whakaoti te w-2=0 me te w+5=0.
w^{2}+3w-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-3±\sqrt{3^{2}-4\left(-10\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-3±\sqrt{9-4\left(-10\right)}}{2}
Pūrua 3.
w=\frac{-3±\sqrt{9+40}}{2}
Whakareatia -4 ki te -10.
w=\frac{-3±\sqrt{49}}{2}
Tāpiri 9 ki te 40.
w=\frac{-3±7}{2}
Tuhia te pūtakerua o te 49.
w=\frac{4}{2}
Nā, me whakaoti te whārite w=\frac{-3±7}{2} ina he tāpiri te ±. Tāpiri -3 ki te 7.
w=2
Whakawehe 4 ki te 2.
w=-\frac{10}{2}
Nā, me whakaoti te whārite w=\frac{-3±7}{2} ina he tango te ±. Tango 7 mai i -3.
w=-5
Whakawehe -10 ki te 2.
w=2 w=-5
Kua oti te whārite te whakatau.
w^{2}+3w-10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
w^{2}+3w-10-\left(-10\right)=-\left(-10\right)
Me tāpiri 10 ki ngā taha e rua o te whārite.
w^{2}+3w=-\left(-10\right)
Mā te tango i te -10 i a ia ake anō ka toe ko te 0.
w^{2}+3w=10
Tango -10 mai i 0.
w^{2}+3w+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+3w+\frac{9}{4}=10+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}+3w+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(w+\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea w^{2}+3w+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+\frac{3}{2}=\frac{7}{2} w+\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
w=2 w=-5
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}