Whakaoti mō w (complex solution)
w=\sqrt{185}-7\approx 6.601470509
w=-\left(\sqrt{185}+7\right)\approx -20.601470509
Whakaoti mō w
w=\sqrt{185}-7\approx 6.601470509
w=-\sqrt{185}-7\approx -20.601470509
Tohaina
Kua tāruatia ki te papatopenga
w^{2}+14w-136=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-14±\sqrt{14^{2}-4\left(-136\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 14 mō b, me -136 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-14±\sqrt{196-4\left(-136\right)}}{2}
Pūrua 14.
w=\frac{-14±\sqrt{196+544}}{2}
Whakareatia -4 ki te -136.
w=\frac{-14±\sqrt{740}}{2}
Tāpiri 196 ki te 544.
w=\frac{-14±2\sqrt{185}}{2}
Tuhia te pūtakerua o te 740.
w=\frac{2\sqrt{185}-14}{2}
Nā, me whakaoti te whārite w=\frac{-14±2\sqrt{185}}{2} ina he tāpiri te ±. Tāpiri -14 ki te 2\sqrt{185}.
w=\sqrt{185}-7
Whakawehe -14+2\sqrt{185} ki te 2.
w=\frac{-2\sqrt{185}-14}{2}
Nā, me whakaoti te whārite w=\frac{-14±2\sqrt{185}}{2} ina he tango te ±. Tango 2\sqrt{185} mai i -14.
w=-\sqrt{185}-7
Whakawehe -14-2\sqrt{185} ki te 2.
w=\sqrt{185}-7 w=-\sqrt{185}-7
Kua oti te whārite te whakatau.
w^{2}+14w-136=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
w^{2}+14w-136-\left(-136\right)=-\left(-136\right)
Me tāpiri 136 ki ngā taha e rua o te whārite.
w^{2}+14w=-\left(-136\right)
Mā te tango i te -136 i a ia ake anō ka toe ko te 0.
w^{2}+14w=136
Tango -136 mai i 0.
w^{2}+14w+7^{2}=136+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+14w+49=136+49
Pūrua 7.
w^{2}+14w+49=185
Tāpiri 136 ki te 49.
\left(w+7\right)^{2}=185
Tauwehea w^{2}+14w+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+7\right)^{2}}=\sqrt{185}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+7=\sqrt{185} w+7=-\sqrt{185}
Whakarūnātia.
w=\sqrt{185}-7 w=-\sqrt{185}-7
Me tango 7 mai i ngā taha e rua o te whārite.
w^{2}+14w-136=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-14±\sqrt{14^{2}-4\left(-136\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 14 mō b, me -136 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-14±\sqrt{196-4\left(-136\right)}}{2}
Pūrua 14.
w=\frac{-14±\sqrt{196+544}}{2}
Whakareatia -4 ki te -136.
w=\frac{-14±\sqrt{740}}{2}
Tāpiri 196 ki te 544.
w=\frac{-14±2\sqrt{185}}{2}
Tuhia te pūtakerua o te 740.
w=\frac{2\sqrt{185}-14}{2}
Nā, me whakaoti te whārite w=\frac{-14±2\sqrt{185}}{2} ina he tāpiri te ±. Tāpiri -14 ki te 2\sqrt{185}.
w=\sqrt{185}-7
Whakawehe -14+2\sqrt{185} ki te 2.
w=\frac{-2\sqrt{185}-14}{2}
Nā, me whakaoti te whārite w=\frac{-14±2\sqrt{185}}{2} ina he tango te ±. Tango 2\sqrt{185} mai i -14.
w=-\sqrt{185}-7
Whakawehe -14-2\sqrt{185} ki te 2.
w=\sqrt{185}-7 w=-\sqrt{185}-7
Kua oti te whārite te whakatau.
w^{2}+14w-136=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
w^{2}+14w-136-\left(-136\right)=-\left(-136\right)
Me tāpiri 136 ki ngā taha e rua o te whārite.
w^{2}+14w=-\left(-136\right)
Mā te tango i te -136 i a ia ake anō ka toe ko te 0.
w^{2}+14w=136
Tango -136 mai i 0.
w^{2}+14w+7^{2}=136+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+14w+49=136+49
Pūrua 7.
w^{2}+14w+49=185
Tāpiri 136 ki te 49.
\left(w+7\right)^{2}=185
Tauwehea w^{2}+14w+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+7\right)^{2}}=\sqrt{185}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+7=\sqrt{185} w+7=-\sqrt{185}
Whakarūnātia.
w=\sqrt{185}-7 w=-\sqrt{185}-7
Me tango 7 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}