Whakaoti mō v
v=0
Tohaina
Kua tāruatia ki te papatopenga
v-4v+36=4\left(5v+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te v-9.
-3v+36=4\left(5v+9\right)
Pahekotia te v me -4v, ka -3v.
-3v+36=20v+36
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 5v+9.
-3v+36-20v=36
Tangohia te 20v mai i ngā taha e rua.
-23v+36=36
Pahekotia te -3v me -20v, ka -23v.
-23v=36-36
Tangohia te 36 mai i ngā taha e rua.
-23v=0
Tangohia te 36 i te 36, ka 0.
v=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te -23 e ōrite ki 0, me ōrite pū te v ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}