Whakaoti mō v
v=11
v=10
Tohaina
Kua tāruatia ki te papatopenga
v^{2}-10v-11\left(v-10\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te v-10.
v^{2}-10v-11v+110=0
Whakamahia te āhuatanga tohatoha hei whakarea te -11 ki te v-10.
v^{2}-21v+110=0
Pahekotia te -10v me -11v, ka -21v.
a+b=-21 ab=110
Hei whakaoti i te whārite, whakatauwehea te v^{2}-21v+110 mā te whakamahi i te tātai v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-110 -2,-55 -5,-22 -10,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 110.
-1-110=-111 -2-55=-57 -5-22=-27 -10-11=-21
Tātaihia te tapeke mō ia takirua.
a=-11 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -21.
\left(v-11\right)\left(v-10\right)
Me tuhi anō te kīanga whakatauwehe \left(v+a\right)\left(v+b\right) mā ngā uara i tātaihia.
v=11 v=10
Hei kimi otinga whārite, me whakaoti te v-11=0 me te v-10=0.
v^{2}-10v-11\left(v-10\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te v-10.
v^{2}-10v-11v+110=0
Whakamahia te āhuatanga tohatoha hei whakarea te -11 ki te v-10.
v^{2}-21v+110=0
Pahekotia te -10v me -11v, ka -21v.
a+b=-21 ab=1\times 110=110
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei v^{2}+av+bv+110. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-110 -2,-55 -5,-22 -10,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 110.
-1-110=-111 -2-55=-57 -5-22=-27 -10-11=-21
Tātaihia te tapeke mō ia takirua.
a=-11 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -21.
\left(v^{2}-11v\right)+\left(-10v+110\right)
Tuhia anō te v^{2}-21v+110 hei \left(v^{2}-11v\right)+\left(-10v+110\right).
v\left(v-11\right)-10\left(v-11\right)
Tauwehea te v i te tuatahi me te -10 i te rōpū tuarua.
\left(v-11\right)\left(v-10\right)
Whakatauwehea atu te kīanga pātahi v-11 mā te whakamahi i te āhuatanga tātai tohatoha.
v=11 v=10
Hei kimi otinga whārite, me whakaoti te v-11=0 me te v-10=0.
v^{2}-10v-11\left(v-10\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te v-10.
v^{2}-10v-11v+110=0
Whakamahia te āhuatanga tohatoha hei whakarea te -11 ki te v-10.
v^{2}-21v+110=0
Pahekotia te -10v me -11v, ka -21v.
v=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 110}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -21 mō b, me 110 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-21\right)±\sqrt{441-4\times 110}}{2}
Pūrua -21.
v=\frac{-\left(-21\right)±\sqrt{441-440}}{2}
Whakareatia -4 ki te 110.
v=\frac{-\left(-21\right)±\sqrt{1}}{2}
Tāpiri 441 ki te -440.
v=\frac{-\left(-21\right)±1}{2}
Tuhia te pūtakerua o te 1.
v=\frac{21±1}{2}
Ko te tauaro o -21 ko 21.
v=\frac{22}{2}
Nā, me whakaoti te whārite v=\frac{21±1}{2} ina he tāpiri te ±. Tāpiri 21 ki te 1.
v=11
Whakawehe 22 ki te 2.
v=\frac{20}{2}
Nā, me whakaoti te whārite v=\frac{21±1}{2} ina he tango te ±. Tango 1 mai i 21.
v=10
Whakawehe 20 ki te 2.
v=11 v=10
Kua oti te whārite te whakatau.
v^{2}-10v-11\left(v-10\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te v-10.
v^{2}-10v-11v+110=0
Whakamahia te āhuatanga tohatoha hei whakarea te -11 ki te v-10.
v^{2}-21v+110=0
Pahekotia te -10v me -11v, ka -21v.
v^{2}-21v=-110
Tangohia te 110 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
v^{2}-21v+\left(-\frac{21}{2}\right)^{2}=-110+\left(-\frac{21}{2}\right)^{2}
Whakawehea te -21, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{21}{2}. Nā, tāpiria te pūrua o te -\frac{21}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-21v+\frac{441}{4}=-110+\frac{441}{4}
Pūruatia -\frac{21}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
v^{2}-21v+\frac{441}{4}=\frac{1}{4}
Tāpiri -110 ki te \frac{441}{4}.
\left(v-\frac{21}{2}\right)^{2}=\frac{1}{4}
Tauwehea v^{2}-21v+\frac{441}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{21}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-\frac{21}{2}=\frac{1}{2} v-\frac{21}{2}=-\frac{1}{2}
Whakarūnātia.
v=11 v=10
Me tāpiri \frac{21}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}