Tauwehe
\left(v-7\right)\left(v+6\right)
Aromātai
\left(v-7\right)\left(v+6\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-1 ab=1\left(-42\right)=-42
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei v^{2}+av+bv-42. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-42 2,-21 3,-14 6,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Tātaihia te tapeke mō ia takirua.
a=-7 b=6
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(v^{2}-7v\right)+\left(6v-42\right)
Tuhia anō te v^{2}-v-42 hei \left(v^{2}-7v\right)+\left(6v-42\right).
v\left(v-7\right)+6\left(v-7\right)
Tauwehea te v i te tuatahi me te 6 i te rōpū tuarua.
\left(v-7\right)\left(v+6\right)
Whakatauwehea atu te kīanga pātahi v-7 mā te whakamahi i te āhuatanga tātai tohatoha.
v^{2}-v-42=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-\left(-1\right)±\sqrt{1-4\left(-42\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-\left(-1\right)±\sqrt{1+168}}{2}
Whakareatia -4 ki te -42.
v=\frac{-\left(-1\right)±\sqrt{169}}{2}
Tāpiri 1 ki te 168.
v=\frac{-\left(-1\right)±13}{2}
Tuhia te pūtakerua o te 169.
v=\frac{1±13}{2}
Ko te tauaro o -1 ko 1.
v=\frac{14}{2}
Nā, me whakaoti te whārite v=\frac{1±13}{2} ina he tāpiri te ±. Tāpiri 1 ki te 13.
v=7
Whakawehe 14 ki te 2.
v=-\frac{12}{2}
Nā, me whakaoti te whārite v=\frac{1±13}{2} ina he tango te ±. Tango 13 mai i 1.
v=-6
Whakawehe -12 ki te 2.
v^{2}-v-42=\left(v-7\right)\left(v-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te -6 mō te x_{2}.
v^{2}-v-42=\left(v-7\right)\left(v+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}