Kimi Pārōnaki e ai ki v
\frac{16\sqrt[15]{v}}{15}
Aromātai
v^{\frac{16}{15}}
Tohaina
Kua tāruatia ki te papatopenga
v^{\frac{2}{3}}\frac{\mathrm{d}}{\mathrm{d}v}(v^{\frac{2}{5}})+v^{\frac{2}{5}}\frac{\mathrm{d}}{\mathrm{d}v}(v^{\frac{2}{3}})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
v^{\frac{2}{3}}\times \frac{2}{5}v^{\frac{2}{5}-1}+v^{\frac{2}{5}}\times \frac{2}{3}v^{\frac{2}{3}-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
v^{\frac{2}{3}}\times \frac{2}{5}v^{-\frac{3}{5}}+v^{\frac{2}{5}}\times \frac{2}{3}v^{-\frac{1}{3}}
Whakarūnātia.
\frac{2}{5}v^{\frac{2}{3}-\frac{3}{5}}+\frac{2}{3}v^{\frac{2}{5}-\frac{1}{3}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2}{5}\sqrt[15]{v}+\frac{2}{3}\sqrt[15]{v}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}