Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki v
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

v^{\frac{2}{3}}\frac{\mathrm{d}}{\mathrm{d}v}(v^{\frac{2}{5}})+v^{\frac{2}{5}}\frac{\mathrm{d}}{\mathrm{d}v}(v^{\frac{2}{3}})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
v^{\frac{2}{3}}\times \frac{2}{5}v^{\frac{2}{5}-1}+v^{\frac{2}{5}}\times \frac{2}{3}v^{\frac{2}{3}-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
v^{\frac{2}{3}}\times \frac{2}{5}v^{-\frac{3}{5}}+v^{\frac{2}{5}}\times \frac{2}{3}v^{-\frac{1}{3}}
Whakarūnātia.
\frac{2}{5}v^{\frac{2}{3}-\frac{3}{5}}+\frac{2}{3}v^{\frac{2}{5}-\frac{1}{3}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2}{5}\sqrt[15]{v}+\frac{2}{3}\sqrt[15]{v}
Whakarūnātia.