Whakaoti mō a
a=-\frac{v}{7}+b
Whakaoti mō b
b=\frac{v}{7}+a
Tohaina
Kua tāruatia ki te papatopenga
v=7b-7a
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te b-a.
7b-7a=v
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-7a=v-7b
Tangohia te 7b mai i ngā taha e rua.
\frac{-7a}{-7}=\frac{v-7b}{-7}
Whakawehea ngā taha e rua ki te -7.
a=\frac{v-7b}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
a=-\frac{v}{7}+b
Whakawehe v-7b ki te -7.
v=7b-7a
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te b-a.
7b-7a=v
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
7b=v+7a
Me tāpiri te 7a ki ngā taha e rua.
\frac{7b}{7}=\frac{v+7a}{7}
Whakawehea ngā taha e rua ki te 7.
b=\frac{v+7a}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
b=\frac{v}{7}+a
Whakawehe v+7a ki te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}