Tīpoka ki ngā ihirangi matua
Whakaoti mō v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

v^{2}=\left(\sqrt{2v+15}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
v^{2}=2v+15
Tātaihia te \sqrt{2v+15} mā te pū o 2, kia riro ko 2v+15.
v^{2}-2v=15
Tangohia te 2v mai i ngā taha e rua.
v^{2}-2v-15=0
Tangohia te 15 mai i ngā taha e rua.
a+b=-2 ab=-15
Hei whakaoti i te whārite, whakatauwehea te v^{2}-2v-15 mā te whakamahi i te tātai v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-5 b=3
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(v-5\right)\left(v+3\right)
Me tuhi anō te kīanga whakatauwehe \left(v+a\right)\left(v+b\right) mā ngā uara i tātaihia.
v=5 v=-3
Hei kimi otinga whārite, me whakaoti te v-5=0 me te v+3=0.
5=\sqrt{2\times 5+15}
Whakakapia te 5 mō te v i te whārite v=\sqrt{2v+15}.
5=5
Whakarūnātia. Ko te uara v=5 kua ngata te whārite.
-3=\sqrt{2\left(-3\right)+15}
Whakakapia te -3 mō te v i te whārite v=\sqrt{2v+15}.
-3=3
Whakarūnātia. Ko te uara v=-3 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
v=5
Ko te whārite v=\sqrt{2v+15} he rongoā ahurei.