Whakaoti mō A
\left\{\begin{matrix}A=\frac{3v}{h}\text{, }&h\neq 0\\A\in \mathrm{R}\text{, }&v=0\text{ and }h=0\end{matrix}\right.
Whakaoti mō h
\left\{\begin{matrix}h=\frac{3v}{A}\text{, }&A\neq 0\\h\in \mathrm{R}\text{, }&v=0\text{ and }A=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}Ah=v
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{h}{3}A=v
He hanga arowhānui tō te whārite.
\frac{3\times \frac{h}{3}A}{h}=\frac{3v}{h}
Whakawehea ngā taha e rua ki te \frac{1}{3}h.
A=\frac{3v}{h}
Mā te whakawehe ki te \frac{1}{3}h ka wetekia te whakareanga ki te \frac{1}{3}h.
\frac{1}{3}Ah=v
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{A}{3}h=v
He hanga arowhānui tō te whārite.
\frac{3\times \frac{A}{3}h}{A}=\frac{3v}{A}
Whakawehea ngā taha e rua ki te \frac{1}{3}A.
h=\frac{3v}{A}
Mā te whakawehe ki te \frac{1}{3}A ka wetekia te whakareanga ki te \frac{1}{3}A.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}