Whakaoti mō u
u=1
Tohaina
Kua tāruatia ki te papatopenga
6u-2\left(u-1\right)=6u-3\left(1-u\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
6u-2u+2=6u-3\left(1-u\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te u-1.
4u+2=6u-3\left(1-u\right)
Pahekotia te 6u me -2u, ka 4u.
4u+2=6u-3+3u
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-u.
4u+2=9u-3
Pahekotia te 6u me 3u, ka 9u.
4u+2-9u=-3
Tangohia te 9u mai i ngā taha e rua.
-5u+2=-3
Pahekotia te 4u me -9u, ka -5u.
-5u=-3-2
Tangohia te 2 mai i ngā taha e rua.
-5u=-5
Tangohia te 2 i te -3, ka -5.
u=\frac{-5}{-5}
Whakawehea ngā taha e rua ki te -5.
u=1
Whakawehea te -5 ki te -5, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}