Tīpoka ki ngā ihirangi matua
Whakaoti mō u
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±20,±10,±5,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 20, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
u=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
u^{2}-9u+20=0
Mā te whakatakotoranga Tauwehe, he tauwehe te u-k o te pūrau mō ia pūtake k. Whakawehea te u^{3}-8u^{2}+11u+20 ki te u+1, kia riro ko u^{2}-9u+20. Whakaotihia te whārite ina ōrite te hua ki te 0.
u=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 1\times 20}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -9 mō te b, me te 20 mō te c i te ture pūrua.
u=\frac{9±1}{2}
Mahia ngā tātaitai.
u=4 u=5
Whakaotia te whārite u^{2}-9u+20=0 ina he tōrunga te ±, ina he tōraro te ±.
u=-1 u=4 u=5
Rārangitia ngā otinga katoa i kitea.