Tīpoka ki ngā ihirangi matua
Whakaoti mō u
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

u^{2}-\frac{2}{3}u=\frac{5}{4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u^{2}-\frac{2}{3}u-\frac{5}{4}=\frac{5}{4}-\frac{5}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
u^{2}-\frac{2}{3}u-\frac{5}{4}=0
Mā te tango i te \frac{5}{4} i a ia ake anō ka toe ko te 0.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\left(-\frac{5}{4}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\frac{2}{3} mō b, me -\frac{5}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\left(-\frac{5}{4}\right)}}{2}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+5}}{2}
Whakareatia -4 ki te -\frac{5}{4}.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{49}{9}}}{2}
Tāpiri \frac{4}{9} ki te 5.
u=\frac{-\left(-\frac{2}{3}\right)±\frac{7}{3}}{2}
Tuhia te pūtakerua o te \frac{49}{9}.
u=\frac{\frac{2}{3}±\frac{7}{3}}{2}
Ko te tauaro o -\frac{2}{3} ko \frac{2}{3}.
u=\frac{3}{2}
Nā, me whakaoti te whārite u=\frac{\frac{2}{3}±\frac{7}{3}}{2} ina he tāpiri te ±. Tāpiri \frac{2}{3} ki te \frac{7}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=-\frac{\frac{5}{3}}{2}
Nā, me whakaoti te whārite u=\frac{\frac{2}{3}±\frac{7}{3}}{2} ina he tango te ±. Tango \frac{7}{3} mai i \frac{2}{3} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=-\frac{5}{6}
Whakawehe -\frac{5}{3} ki te 2.
u=\frac{3}{2} u=-\frac{5}{6}
Kua oti te whārite te whakatau.
u^{2}-\frac{2}{3}u=\frac{5}{4}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
u^{2}-\frac{2}{3}u+\left(-\frac{1}{3}\right)^{2}=\frac{5}{4}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{5}{4}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{49}{36}
Tāpiri \frac{5}{4} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(u-\frac{1}{3}\right)^{2}=\frac{49}{36}
Tauwehea u^{2}-\frac{2}{3}u+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u-\frac{1}{3}=\frac{7}{6} u-\frac{1}{3}=-\frac{7}{6}
Whakarūnātia.
u=\frac{3}{2} u=-\frac{5}{6}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.