Tīpoka ki ngā ihirangi matua
Whakaoti mō u
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=6 ab=5
Hei whakaoti i te whārite, whakatauwehea te u^{2}+6u+5 mā te whakamahi i te tātai u^{2}+\left(a+b\right)u+ab=\left(u+a\right)\left(u+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(u+1\right)\left(u+5\right)
Me tuhi anō te kīanga whakatauwehe \left(u+a\right)\left(u+b\right) mā ngā uara i tātaihia.
u=-1 u=-5
Hei kimi otinga whārite, me whakaoti te u+1=0 me te u+5=0.
a+b=6 ab=1\times 5=5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei u^{2}+au+bu+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(u^{2}+u\right)+\left(5u+5\right)
Tuhia anō te u^{2}+6u+5 hei \left(u^{2}+u\right)+\left(5u+5\right).
u\left(u+1\right)+5\left(u+1\right)
Tauwehea te u i te tuatahi me te 5 i te rōpū tuarua.
\left(u+1\right)\left(u+5\right)
Whakatauwehea atu te kīanga pātahi u+1 mā te whakamahi i te āhuatanga tātai tohatoha.
u=-1 u=-5
Hei kimi otinga whārite, me whakaoti te u+1=0 me te u+5=0.
u^{2}+6u+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-6±\sqrt{36-4\times 5}}{2}
Pūrua 6.
u=\frac{-6±\sqrt{36-20}}{2}
Whakareatia -4 ki te 5.
u=\frac{-6±\sqrt{16}}{2}
Tāpiri 36 ki te -20.
u=\frac{-6±4}{2}
Tuhia te pūtakerua o te 16.
u=-\frac{2}{2}
Nā, me whakaoti te whārite u=\frac{-6±4}{2} ina he tāpiri te ±. Tāpiri -6 ki te 4.
u=-1
Whakawehe -2 ki te 2.
u=-\frac{10}{2}
Nā, me whakaoti te whārite u=\frac{-6±4}{2} ina he tango te ±. Tango 4 mai i -6.
u=-5
Whakawehe -10 ki te 2.
u=-1 u=-5
Kua oti te whārite te whakatau.
u^{2}+6u+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
u^{2}+6u+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
u^{2}+6u=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
u^{2}+6u+3^{2}=-5+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}+6u+9=-5+9
Pūrua 3.
u^{2}+6u+9=4
Tāpiri -5 ki te 9.
\left(u+3\right)^{2}=4
Tauwehea u^{2}+6u+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+3\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u+3=2 u+3=-2
Whakarūnātia.
u=-1 u=-5
Me tango 3 mai i ngā taha e rua o te whārite.