Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki u
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt[8]{u}\frac{\mathrm{d}}{\mathrm{d}u}(u^{\frac{3}{4}})+u^{\frac{3}{4}}\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt[8]{u})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\sqrt[8]{u}\times \frac{3}{4}u^{\frac{3}{4}-1}+u^{\frac{3}{4}}\times \frac{1}{8}u^{\frac{1}{8}-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\sqrt[8]{u}\times \frac{3}{4}u^{-\frac{1}{4}}+u^{\frac{3}{4}}\times \frac{1}{8}u^{-\frac{7}{8}}
Whakarūnātia.
\frac{3}{4}u^{\frac{1}{8}-\frac{1}{4}}+\frac{1}{8}u^{\frac{3}{4}-\frac{7}{8}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3}{4}u^{-\frac{1}{8}}+\frac{1}{8}u^{-\frac{1}{8}}
Whakarūnātia.
u^{\frac{7}{8}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{1}{8} me te \frac{3}{4} kia riro ai te \frac{7}{8}.