Whakaoti mō u
u = \frac{675000000000}{361} = 1869806094\frac{66}{361} \approx 1869806094.182825485
Tautapa u
u≔\frac{675000000000}{361}
Tohaina
Kua tāruatia ki te papatopenga
u=4.56\times \frac{1\times 1000\times 1.5\times 15^{4}}{0.57^{3}}
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
u=4.56\times \frac{1000\times 1.5\times 15^{4}}{0.57^{3}}
Whakareatia te 1 ki te 1000, ka 1000.
u=4.56\times \frac{1500\times 15^{4}}{0.57^{3}}
Whakareatia te 1000 ki te 1.5, ka 1500.
u=4.56\times \frac{1500\times 50625}{0.57^{3}}
Tātaihia te 15 mā te pū o 4, kia riro ko 50625.
u=4.56\times \frac{75937500}{0.57^{3}}
Whakareatia te 1500 ki te 50625, ka 75937500.
u=4.56\times \frac{75937500}{0.185193}
Tātaihia te 0.57 mā te pū o 3, kia riro ko 0.185193.
u=4.56\times \frac{75937500000000}{185193}
Whakarohaina te \frac{75937500}{0.185193} mā te whakarea i te taurunga me te tauraro ki te 1000000.
u=4.56\times \frac{2812500000000}{6859}
Whakahekea te hautanga \frac{75937500000000}{185193} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 27.
u=\frac{114}{25}\times \frac{2812500000000}{6859}
Me tahuri ki tau ā-ira 4.56 ki te hautau \frac{456}{100}. Whakahekea te hautanga \frac{456}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
u=\frac{114\times 2812500000000}{25\times 6859}
Me whakarea te \frac{114}{25} ki te \frac{2812500000000}{6859} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
u=\frac{320625000000000}{171475}
Mahia ngā whakarea i roto i te hautanga \frac{114\times 2812500000000}{25\times 6859}.
u=\frac{675000000000}{361}
Whakahekea te hautanga \frac{320625000000000}{171475} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 475.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}