Tīpoka ki ngā ihirangi matua
Whakaoti mō D
Tick mark Image
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t_{1}\left(-v+c\right)\left(-v-c\right)=\left(-v-c\right)D+\left(-c+v\right)D
Me whakarea ngā taha e rua o te whārite ki te \left(-v+c\right)\left(-v-c\right), arā, te tauraro pātahi he tino iti rawa te kitea o c-v,c+v.
\left(-t_{1}v+t_{1}c\right)\left(-v-c\right)=\left(-v-c\right)D+\left(-c+v\right)D
Whakamahia te āhuatanga tohatoha hei whakarea te t_{1} ki te -v+c.
v^{2}t_{1}-t_{1}c^{2}=\left(-v-c\right)D+\left(-c+v\right)D
Whakamahia te āhuatanga tuaritanga hei whakarea te -t_{1}v+t_{1}c ki te -v-c ka whakakotahi i ngā kupu rite.
v^{2}t_{1}-t_{1}c^{2}=-vD-cD+\left(-c+v\right)D
Whakamahia te āhuatanga tohatoha hei whakarea te -v-c ki te D.
v^{2}t_{1}-t_{1}c^{2}=-vD-cD-cD+vD
Whakamahia te āhuatanga tohatoha hei whakarea te -c+v ki te D.
v^{2}t_{1}-t_{1}c^{2}=-vD-2cD+vD
Pahekotia te -cD me -cD, ka -2cD.
v^{2}t_{1}-t_{1}c^{2}=-2cD
Pahekotia te -vD me vD, ka 0.
-2cD=v^{2}t_{1}-t_{1}c^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-2c\right)D=t_{1}v^{2}-t_{1}c^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-2c\right)D}{-2c}=\frac{t_{1}\left(v-c\right)\left(v+c\right)}{-2c}
Whakawehea ngā taha e rua ki te -2c.
D=\frac{t_{1}\left(v-c\right)\left(v+c\right)}{-2c}
Mā te whakawehe ki te -2c ka wetekia te whakareanga ki te -2c.
D=-\frac{t_{1}\left(v-c\right)\left(v+c\right)}{2c}
Whakawehe t_{1}\left(v-c\right)\left(v+c\right) ki te -2c.