Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Me whakarea te \frac{4}{5} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t\times \frac{4}{10}\left(30-4t\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te t\times \frac{2}{5} ki te 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te t ki te t, ka t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Tuhia te \frac{2}{5}\times 30 hei hautanga kotahi.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te 2 ki te 30, ka 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Whakawehea te 60 ki te 5, kia riro ko 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Tuhia te \frac{2}{5}\left(-4\right) hei hautanga kotahi.
t\times 12+t^{2}\times \frac{-8}{5}
Whakareatia te 2 ki te -4, ka -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Ka taea te hautanga \frac{-8}{5} te tuhi anō ko -\frac{8}{5} mā te tango i te tohu tōraro.
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Me whakarea te \frac{4}{5} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t\times \frac{4}{10}\left(30-4t\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te t\times \frac{2}{5} ki te 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te t ki te t, ka t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Tuhia te \frac{2}{5}\times 30 hei hautanga kotahi.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te 2 ki te 30, ka 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Whakawehea te 60 ki te 5, kia riro ko 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Tuhia te \frac{2}{5}\left(-4\right) hei hautanga kotahi.
t\times 12+t^{2}\times \frac{-8}{5}
Whakareatia te 2 ki te -4, ka -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Ka taea te hautanga \frac{-8}{5} te tuhi anō ko -\frac{8}{5} mā te tango i te tohu tōraro.