Aromātai
\frac{4t\left(15-2t\right)}{5}
Whakaroha
-\frac{8t^{2}}{5}+12t
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
t \cdot \frac { 4 } { 5 } ( 30 - 4 t ) \cdot \frac { 1 } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Me whakarea te \frac{4}{5} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t\times \frac{4}{10}\left(30-4t\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te t\times \frac{2}{5} ki te 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te t ki te t, ka t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Tuhia te \frac{2}{5}\times 30 hei hautanga kotahi.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te 2 ki te 30, ka 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Whakawehea te 60 ki te 5, kia riro ko 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Tuhia te \frac{2}{5}\left(-4\right) hei hautanga kotahi.
t\times 12+t^{2}\times \frac{-8}{5}
Whakareatia te 2 ki te -4, ka -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Ka taea te hautanga \frac{-8}{5} te tuhi anō ko -\frac{8}{5} mā te tango i te tohu tōraro.
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Me whakarea te \frac{4}{5} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t\times \frac{4}{10}\left(30-4t\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te t\times \frac{2}{5} ki te 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te t ki te t, ka t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Tuhia te \frac{2}{5}\times 30 hei hautanga kotahi.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Whakareatia te 2 ki te 30, ka 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Whakawehea te 60 ki te 5, kia riro ko 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Tuhia te \frac{2}{5}\left(-4\right) hei hautanga kotahi.
t\times 12+t^{2}\times \frac{-8}{5}
Whakareatia te 2 ki te -4, ka -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Ka taea te hautanga \frac{-8}{5} te tuhi anō ko -\frac{8}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}