Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±6,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 6, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
t=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
t^{2}+t-6=0
Mā te whakatakotoranga Tauwehe, he tauwehe te t-k o te pūrau mō ia pūtake k. Whakawehea te t^{3}-7t+6 ki te t-1, kia riro ko t^{2}+t-6. Whakaotihia te whārite ina ōrite te hua ki te 0.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-6\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te -6 mō te c i te ture pūrua.
t=\frac{-1±5}{2}
Mahia ngā tātaitai.
t=-3 t=2
Whakaotia te whārite t^{2}+t-6=0 ina he tōrunga te ±, ina he tōraro te ±.
t=1 t=-3 t=2
Rārangitia ngā otinga katoa i kitea.