Tauwehe
t\left(t-3\right)\left(t-1\right)
Aromātai
t\left(t-3\right)\left(t-1\right)
Tohaina
Kua tāruatia ki te papatopenga
t\left(t^{2}-4t+3\right)
Tauwehea te t.
a+b=-4 ab=1\times 3=3
Whakaarohia te t^{2}-4t+3. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei t^{2}+at+bt+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(t^{2}-3t\right)+\left(-t+3\right)
Tuhia anō te t^{2}-4t+3 hei \left(t^{2}-3t\right)+\left(-t+3\right).
t\left(t-3\right)-\left(t-3\right)
Tauwehea te t i te tuatahi me te -1 i te rōpū tuarua.
\left(t-3\right)\left(t-1\right)
Whakatauwehea atu te kīanga pātahi t-3 mā te whakamahi i te āhuatanga tātai tohatoha.
t\left(t-3\right)\left(t-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}