Whakaoti mō t
t=40
t=50
Tohaina
Kua tāruatia ki te papatopenga
t^{2}-90t+2000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 2000}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -90 mō b, me 2000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-90\right)±\sqrt{8100-4\times 2000}}{2}
Pūrua -90.
t=\frac{-\left(-90\right)±\sqrt{8100-8000}}{2}
Whakareatia -4 ki te 2000.
t=\frac{-\left(-90\right)±\sqrt{100}}{2}
Tāpiri 8100 ki te -8000.
t=\frac{-\left(-90\right)±10}{2}
Tuhia te pūtakerua o te 100.
t=\frac{90±10}{2}
Ko te tauaro o -90 ko 90.
t=\frac{100}{2}
Nā, me whakaoti te whārite t=\frac{90±10}{2} ina he tāpiri te ±. Tāpiri 90 ki te 10.
t=50
Whakawehe 100 ki te 2.
t=\frac{80}{2}
Nā, me whakaoti te whārite t=\frac{90±10}{2} ina he tango te ±. Tango 10 mai i 90.
t=40
Whakawehe 80 ki te 2.
t=50 t=40
Kua oti te whārite te whakatau.
t^{2}-90t+2000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}-90t+2000-2000=-2000
Me tango 2000 mai i ngā taha e rua o te whārite.
t^{2}-90t=-2000
Mā te tango i te 2000 i a ia ake anō ka toe ko te 0.
t^{2}-90t+\left(-45\right)^{2}=-2000+\left(-45\right)^{2}
Whakawehea te -90, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -45. Nā, tāpiria te pūrua o te -45 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-90t+2025=-2000+2025
Pūrua -45.
t^{2}-90t+2025=25
Tāpiri -2000 ki te 2025.
\left(t-45\right)^{2}=25
Tauwehea t^{2}-90t+2025. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-45\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-45=5 t-45=-5
Whakarūnātia.
t=50 t=40
Me tāpiri 45 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}