Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-4t-4=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-4\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -4 mō te b, me te -4 mō te c i te ture pūrua.
t=\frac{4±4\sqrt{2}}{2}
Mahia ngā tātaitai.
t=2\sqrt{2}+2 t=2-2\sqrt{2}
Whakaotia te whārite t=\frac{4±4\sqrt{2}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(t-\left(2\sqrt{2}+2\right)\right)\left(t-\left(2-2\sqrt{2}\right)\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
t-\left(2\sqrt{2}+2\right)\leq 0 t-\left(2-2\sqrt{2}\right)\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te t-\left(2\sqrt{2}+2\right) me te t-\left(2-2\sqrt{2}\right). Whakaarohia te tauira ina he ≤0 tahi te t-\left(2\sqrt{2}+2\right) me te t-\left(2-2\sqrt{2}\right).
t\leq 2-2\sqrt{2}
Te otinga e whakaea i ngā koreōrite e rua ko t\leq 2-2\sqrt{2}.
t-\left(2-2\sqrt{2}\right)\geq 0 t-\left(2\sqrt{2}+2\right)\geq 0
Whakaarohia te tauira ina he ≥0 tahi te t-\left(2\sqrt{2}+2\right) me te t-\left(2-2\sqrt{2}\right).
t\geq 2\sqrt{2}+2
Te otinga e whakaea i ngā koreōrite e rua ko t\geq 2\sqrt{2}+2.
t\leq 2-2\sqrt{2}\text{; }t\geq 2\sqrt{2}+2
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.