Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-4 ab=1\times 4=4
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei t^{2}+at+bt+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(t^{2}-2t\right)+\left(-2t+4\right)
Tuhia anō te t^{2}-4t+4 hei \left(t^{2}-2t\right)+\left(-2t+4\right).
t\left(t-2\right)-2\left(t-2\right)
Tauwehea te t i te tuatahi me te -2 i te rōpū tuarua.
\left(t-2\right)\left(t-2\right)
Whakatauwehea atu te kīanga pātahi t-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(t-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(t^{2}-4t+4)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
\sqrt{4}=2
Kimihia te pūtakerua o te kīanga tau autō, 4.
\left(t-2\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
t^{2}-4t+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Pūrua -4.
t=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Whakareatia -4 ki te 4.
t=\frac{-\left(-4\right)±\sqrt{0}}{2}
Tāpiri 16 ki te -16.
t=\frac{-\left(-4\right)±0}{2}
Tuhia te pūtakerua o te 0.
t=\frac{4±0}{2}
Ko te tauaro o -4 ko 4.
t^{2}-4t+4=\left(t-2\right)\left(t-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 2 mō te x_{2}.