Whakaoti mō t
t=-6
t=30
Tohaina
Kua tāruatia ki te papatopenga
a+b=-24 ab=-180
Hei whakaoti i te whārite, whakatauwehea te t^{2}-24t-180 mā te whakamahi i te tātai t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Tātaihia te tapeke mō ia takirua.
a=-30 b=6
Ko te otinga te takirua ka hoatu i te tapeke -24.
\left(t-30\right)\left(t+6\right)
Me tuhi anō te kīanga whakatauwehe \left(t+a\right)\left(t+b\right) mā ngā uara i tātaihia.
t=30 t=-6
Hei kimi otinga whārite, me whakaoti te t-30=0 me te t+6=0.
a+b=-24 ab=1\left(-180\right)=-180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt-180. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Tātaihia te tapeke mō ia takirua.
a=-30 b=6
Ko te otinga te takirua ka hoatu i te tapeke -24.
\left(t^{2}-30t\right)+\left(6t-180\right)
Tuhia anō te t^{2}-24t-180 hei \left(t^{2}-30t\right)+\left(6t-180\right).
t\left(t-30\right)+6\left(t-30\right)
Tauwehea te t i te tuatahi me te 6 i te rōpū tuarua.
\left(t-30\right)\left(t+6\right)
Whakatauwehea atu te kīanga pātahi t-30 mā te whakamahi i te āhuatanga tātai tohatoha.
t=30 t=-6
Hei kimi otinga whārite, me whakaoti te t-30=0 me te t+6=0.
t^{2}-24t-180=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-180\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -24 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-24\right)±\sqrt{576-4\left(-180\right)}}{2}
Pūrua -24.
t=\frac{-\left(-24\right)±\sqrt{576+720}}{2}
Whakareatia -4 ki te -180.
t=\frac{-\left(-24\right)±\sqrt{1296}}{2}
Tāpiri 576 ki te 720.
t=\frac{-\left(-24\right)±36}{2}
Tuhia te pūtakerua o te 1296.
t=\frac{24±36}{2}
Ko te tauaro o -24 ko 24.
t=\frac{60}{2}
Nā, me whakaoti te whārite t=\frac{24±36}{2} ina he tāpiri te ±. Tāpiri 24 ki te 36.
t=30
Whakawehe 60 ki te 2.
t=-\frac{12}{2}
Nā, me whakaoti te whārite t=\frac{24±36}{2} ina he tango te ±. Tango 36 mai i 24.
t=-6
Whakawehe -12 ki te 2.
t=30 t=-6
Kua oti te whārite te whakatau.
t^{2}-24t-180=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}-24t-180-\left(-180\right)=-\left(-180\right)
Me tāpiri 180 ki ngā taha e rua o te whārite.
t^{2}-24t=-\left(-180\right)
Mā te tango i te -180 i a ia ake anō ka toe ko te 0.
t^{2}-24t=180
Tango -180 mai i 0.
t^{2}-24t+\left(-12\right)^{2}=180+\left(-12\right)^{2}
Whakawehea te -24, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -12. Nā, tāpiria te pūrua o te -12 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-24t+144=180+144
Pūrua -12.
t^{2}-24t+144=324
Tāpiri 180 ki te 144.
\left(t-12\right)^{2}=324
Tauwehea t^{2}-24t+144. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-12\right)^{2}}=\sqrt{324}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-12=18 t-12=-18
Whakarūnātia.
t=30 t=-6
Me tāpiri 12 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}