Tauwehe
\left(t-5\right)\left(t+3\right)
Aromātai
\left(t-5\right)\left(t+3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-2 ab=1\left(-15\right)=-15
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei t^{2}+at+bt-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-5 b=3
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(t^{2}-5t\right)+\left(3t-15\right)
Tuhia anō te t^{2}-2t-15 hei \left(t^{2}-5t\right)+\left(3t-15\right).
t\left(t-5\right)+3\left(t-5\right)
Tauwehea te t i te tuatahi me te 3 i te rōpū tuarua.
\left(t-5\right)\left(t+3\right)
Whakatauwehea atu te kīanga pātahi t-5 mā te whakamahi i te āhuatanga tātai tohatoha.
t^{2}-2t-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-15\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-2\right)±\sqrt{4-4\left(-15\right)}}{2}
Pūrua -2.
t=\frac{-\left(-2\right)±\sqrt{4+60}}{2}
Whakareatia -4 ki te -15.
t=\frac{-\left(-2\right)±\sqrt{64}}{2}
Tāpiri 4 ki te 60.
t=\frac{-\left(-2\right)±8}{2}
Tuhia te pūtakerua o te 64.
t=\frac{2±8}{2}
Ko te tauaro o -2 ko 2.
t=\frac{10}{2}
Nā, me whakaoti te whārite t=\frac{2±8}{2} ina he tāpiri te ±. Tāpiri 2 ki te 8.
t=5
Whakawehe 10 ki te 2.
t=-\frac{6}{2}
Nā, me whakaoti te whārite t=\frac{2±8}{2} ina he tango te ±. Tango 8 mai i 2.
t=-3
Whakawehe -6 ki te 2.
t^{2}-2t-15=\left(t-5\right)\left(t-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te -3 mō te x_{2}.
t^{2}-2t-15=\left(t-5\right)\left(t+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}