Tauwehe
\left(t-10\right)\left(t-7\right)
Aromātai
\left(t-10\right)\left(t-7\right)
Pātaitai
Polynomial
t ^ { 2 } - 17 t + 70
Tohaina
Kua tāruatia ki te papatopenga
a+b=-17 ab=1\times 70=70
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei t^{2}+at+bt+70. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-70 -2,-35 -5,-14 -7,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 70.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
Tātaihia te tapeke mō ia takirua.
a=-10 b=-7
Ko te otinga te takirua ka hoatu i te tapeke -17.
\left(t^{2}-10t\right)+\left(-7t+70\right)
Tuhia anō te t^{2}-17t+70 hei \left(t^{2}-10t\right)+\left(-7t+70\right).
t\left(t-10\right)-7\left(t-10\right)
Tauwehea te t i te tuatahi me te -7 i te rōpū tuarua.
\left(t-10\right)\left(t-7\right)
Whakatauwehea atu te kīanga pātahi t-10 mā te whakamahi i te āhuatanga tātai tohatoha.
t^{2}-17t+70=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 70}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-17\right)±\sqrt{289-4\times 70}}{2}
Pūrua -17.
t=\frac{-\left(-17\right)±\sqrt{289-280}}{2}
Whakareatia -4 ki te 70.
t=\frac{-\left(-17\right)±\sqrt{9}}{2}
Tāpiri 289 ki te -280.
t=\frac{-\left(-17\right)±3}{2}
Tuhia te pūtakerua o te 9.
t=\frac{17±3}{2}
Ko te tauaro o -17 ko 17.
t=\frac{20}{2}
Nā, me whakaoti te whārite t=\frac{17±3}{2} ina he tāpiri te ±. Tāpiri 17 ki te 3.
t=10
Whakawehe 20 ki te 2.
t=\frac{14}{2}
Nā, me whakaoti te whārite t=\frac{17±3}{2} ina he tango te ±. Tango 3 mai i 17.
t=7
Whakawehe 14 ki te 2.
t^{2}-17t+70=\left(t-10\right)\left(t-7\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 10 mō te x_{1} me te 7 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}