Whakaoti mō c
c=\frac{\sqrt{3}\left(t^{2}-6\right)}{3}
Whakaoti mō t
t=\sqrt{\sqrt{3}c+6}
t=-\sqrt{\sqrt{3}c+6}\text{, }c\geq -2\sqrt{3}
Tohaina
Kua tāruatia ki te papatopenga
t^{2}-\sqrt{3}c=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-\sqrt{3}c=6-t^{2}
Tangohia te t^{2} mai i ngā taha e rua.
\left(-\sqrt{3}\right)c=6-t^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-\sqrt{3}\right)c}{-\sqrt{3}}=\frac{6-t^{2}}{-\sqrt{3}}
Whakawehea ngā taha e rua ki te -\sqrt{3}.
c=\frac{6-t^{2}}{-\sqrt{3}}
Mā te whakawehe ki te -\sqrt{3} ka wetekia te whakareanga ki te -\sqrt{3}.
c=\frac{\sqrt{3}t^{2}}{3}-2\sqrt{3}
Whakawehe 6-t^{2} ki te -\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}