Whakaoti mō x
x=\frac{625000000000000000}{3247037965987553t^{2}}
t\neq 0
Whakaoti mō t
t=\frac{250000000\sqrt{\frac{32470379659875530}{x}}}{3247037965987553}
t=-\frac{250000000\sqrt{\frac{32470379659875530}{x}}}{3247037965987553}\text{, }x>0
Graph
Tohaina
Kua tāruatia ki te papatopenga
t ^ {2} 0.6494075931975106 = \frac{125}{x}
Evaluate trigonometric functions in the problem
t^{2}\times 0.6494075931975106x=125
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{3247037965987553t^{2}}{5000000000000000}x=125
He hanga arowhānui tō te whārite.
\frac{5000000000000000\times \frac{3247037965987553t^{2}}{5000000000000000}x}{3247037965987553t^{2}}=\frac{125\times 5000000000000000}{3247037965987553t^{2}}
Whakawehea ngā taha e rua ki te 0.6494075931975106t^{2}.
x=\frac{125\times 5000000000000000}{3247037965987553t^{2}}
Mā te whakawehe ki te 0.6494075931975106t^{2} ka wetekia te whakareanga ki te 0.6494075931975106t^{2}.
x=\frac{625000000000000000}{3247037965987553t^{2}}
Whakawehe 125 ki te 0.6494075931975106t^{2}.
x=\frac{625000000000000000}{3247037965987553t^{2}}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}