Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-36=0
Tangohia te 36 mai i ngā taha e rua.
\left(t-6\right)\left(t+6\right)=0
Whakaarohia te t^{2}-36. Tuhia anō te t^{2}-36 hei t^{2}-6^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=6 t=-6
Hei kimi otinga whārite, me whakaoti te t-6=0 me te t+6=0.
t=6 t=-6
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t^{2}-36=0
Tangohia te 36 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Pūrua 0.
t=\frac{0±\sqrt{144}}{2}
Whakareatia -4 ki te -36.
t=\frac{0±12}{2}
Tuhia te pūtakerua o te 144.
t=6
Nā, me whakaoti te whārite t=\frac{0±12}{2} ina he tāpiri te ±. Whakawehe 12 ki te 2.
t=-6
Nā, me whakaoti te whārite t=\frac{0±12}{2} ina he tango te ±. Whakawehe -12 ki te 2.
t=6 t=-6
Kua oti te whārite te whakatau.