Whakaoti mō t
t=-32
t=128
Tohaina
Kua tāruatia ki te papatopenga
\frac{t^{2}}{16}-6t-2^{8}=0
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{t^{2}}{16}-6t-256=0
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
t^{2}-96t-4096=0
Whakareatia ngā taha e rua o te whārite ki te 16.
a+b=-96 ab=-4096
Hei whakaoti i te whārite, whakatauwehea te t^{2}-96t-4096 mā te whakamahi i te tātai t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4096 2,-2048 4,-1024 8,-512 16,-256 32,-128 64,-64
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4096.
1-4096=-4095 2-2048=-2046 4-1024=-1020 8-512=-504 16-256=-240 32-128=-96 64-64=0
Tātaihia te tapeke mō ia takirua.
a=-128 b=32
Ko te otinga te takirua ka hoatu i te tapeke -96.
\left(t-128\right)\left(t+32\right)
Me tuhi anō te kīanga whakatauwehe \left(t+a\right)\left(t+b\right) mā ngā uara i tātaihia.
t=128 t=-32
Hei kimi otinga whārite, me whakaoti te t-128=0 me te t+32=0.
\frac{t^{2}}{16}-6t-2^{8}=0
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{t^{2}}{16}-6t-256=0
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
t^{2}-96t-4096=0
Whakareatia ngā taha e rua o te whārite ki te 16.
a+b=-96 ab=1\left(-4096\right)=-4096
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt-4096. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4096 2,-2048 4,-1024 8,-512 16,-256 32,-128 64,-64
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4096.
1-4096=-4095 2-2048=-2046 4-1024=-1020 8-512=-504 16-256=-240 32-128=-96 64-64=0
Tātaihia te tapeke mō ia takirua.
a=-128 b=32
Ko te otinga te takirua ka hoatu i te tapeke -96.
\left(t^{2}-128t\right)+\left(32t-4096\right)
Tuhia anō te t^{2}-96t-4096 hei \left(t^{2}-128t\right)+\left(32t-4096\right).
t\left(t-128\right)+32\left(t-128\right)
Tauwehea te t i te tuatahi me te 32 i te rōpū tuarua.
\left(t-128\right)\left(t+32\right)
Whakatauwehea atu te kīanga pātahi t-128 mā te whakamahi i te āhuatanga tātai tohatoha.
t=128 t=-32
Hei kimi otinga whārite, me whakaoti te t-128=0 me te t+32=0.
\frac{t^{2}}{16}-6t-2^{8}=0
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{t^{2}}{16}-6t-256=0
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
t^{2}-96t-4096=0
Whakareatia ngā taha e rua o te whārite ki te 16.
t=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\left(-4096\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -96 mō b, me -4096 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-96\right)±\sqrt{9216-4\left(-4096\right)}}{2}
Pūrua -96.
t=\frac{-\left(-96\right)±\sqrt{9216+16384}}{2}
Whakareatia -4 ki te -4096.
t=\frac{-\left(-96\right)±\sqrt{25600}}{2}
Tāpiri 9216 ki te 16384.
t=\frac{-\left(-96\right)±160}{2}
Tuhia te pūtakerua o te 25600.
t=\frac{96±160}{2}
Ko te tauaro o -96 ko 96.
t=\frac{256}{2}
Nā, me whakaoti te whārite t=\frac{96±160}{2} ina he tāpiri te ±. Tāpiri 96 ki te 160.
t=128
Whakawehe 256 ki te 2.
t=-\frac{64}{2}
Nā, me whakaoti te whārite t=\frac{96±160}{2} ina he tango te ±. Tango 160 mai i 96.
t=-32
Whakawehe -64 ki te 2.
t=128 t=-32
Kua oti te whārite te whakatau.
\frac{t^{2}}{16}-6t-2^{8}=0
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{t^{2}}{16}-6t-256=0
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
\frac{t^{2}}{16}-6t=256
Me tāpiri te 256 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
t^{2}-96t=4096
Whakareatia ngā taha e rua o te whārite ki te 16.
t^{2}-96t+\left(-48\right)^{2}=4096+\left(-48\right)^{2}
Whakawehea te -96, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -48. Nā, tāpiria te pūrua o te -48 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-96t+2304=4096+2304
Pūrua -48.
t^{2}-96t+2304=6400
Tāpiri 4096 ki te 2304.
\left(t-48\right)^{2}=6400
Tauwehea t^{2}-96t+2304. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-48\right)^{2}}=\sqrt{6400}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-48=80 t-48=-80
Whakarūnātia.
t=128 t=-32
Me tāpiri 48 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}