Whakaoti mō t
t=-12
t=6
Tohaina
Kua tāruatia ki te papatopenga
a+b=6 ab=-72
Hei whakaoti i te whārite, whakatauwehea te t^{2}+6t-72 mā te whakamahi i te tātai t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-6 b=12
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(t-6\right)\left(t+12\right)
Me tuhi anō te kīanga whakatauwehe \left(t+a\right)\left(t+b\right) mā ngā uara i tātaihia.
t=6 t=-12
Hei kimi otinga whārite, me whakaoti te t-6=0 me te t+12=0.
a+b=6 ab=1\left(-72\right)=-72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt-72. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-6 b=12
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(t^{2}-6t\right)+\left(12t-72\right)
Tuhia anō te t^{2}+6t-72 hei \left(t^{2}-6t\right)+\left(12t-72\right).
t\left(t-6\right)+12\left(t-6\right)
Tauwehea te t i te tuatahi me te 12 i te rōpū tuarua.
\left(t-6\right)\left(t+12\right)
Whakatauwehea atu te kīanga pātahi t-6 mā te whakamahi i te āhuatanga tātai tohatoha.
t=6 t=-12
Hei kimi otinga whārite, me whakaoti te t-6=0 me te t+12=0.
t^{2}+6t-72=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-6±\sqrt{6^{2}-4\left(-72\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-72\right)}}{2}
Pūrua 6.
t=\frac{-6±\sqrt{36+288}}{2}
Whakareatia -4 ki te -72.
t=\frac{-6±\sqrt{324}}{2}
Tāpiri 36 ki te 288.
t=\frac{-6±18}{2}
Tuhia te pūtakerua o te 324.
t=\frac{12}{2}
Nā, me whakaoti te whārite t=\frac{-6±18}{2} ina he tāpiri te ±. Tāpiri -6 ki te 18.
t=6
Whakawehe 12 ki te 2.
t=-\frac{24}{2}
Nā, me whakaoti te whārite t=\frac{-6±18}{2} ina he tango te ±. Tango 18 mai i -6.
t=-12
Whakawehe -24 ki te 2.
t=6 t=-12
Kua oti te whārite te whakatau.
t^{2}+6t-72=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}+6t-72-\left(-72\right)=-\left(-72\right)
Me tāpiri 72 ki ngā taha e rua o te whārite.
t^{2}+6t=-\left(-72\right)
Mā te tango i te -72 i a ia ake anō ka toe ko te 0.
t^{2}+6t=72
Tango -72 mai i 0.
t^{2}+6t+3^{2}=72+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+6t+9=72+9
Pūrua 3.
t^{2}+6t+9=81
Tāpiri 72 ki te 9.
\left(t+3\right)^{2}=81
Tauwehea t^{2}+6t+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+3\right)^{2}}=\sqrt{81}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+3=9 t+3=-9
Whakarūnātia.
t=6 t=-12
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}