Whakaoti mō t (complex solution)
t=\sqrt{6}-2\approx 0.449489743
t=-\left(\sqrt{6}+2\right)\approx -4.449489743
Whakaoti mō t
t=\sqrt{6}-2\approx 0.449489743
t=-\sqrt{6}-2\approx -4.449489743
Tohaina
Kua tāruatia ki te papatopenga
t^{2}+4t+1=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t^{2}+4t+1-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
t^{2}+4t+1-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
t^{2}+4t-2=0
Tango 3 mai i 1.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-2\right)}}{2}
Pūrua 4.
t=\frac{-4±\sqrt{16+8}}{2}
Whakareatia -4 ki te -2.
t=\frac{-4±\sqrt{24}}{2}
Tāpiri 16 ki te 8.
t=\frac{-4±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
t=\frac{2\sqrt{6}-4}{2}
Nā, me whakaoti te whārite t=\frac{-4±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{6}.
t=\sqrt{6}-2
Whakawehe -4+2\sqrt{6} ki te 2.
t=\frac{-2\sqrt{6}-4}{2}
Nā, me whakaoti te whārite t=\frac{-4±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i -4.
t=-\sqrt{6}-2
Whakawehe -4-2\sqrt{6} ki te 2.
t=\sqrt{6}-2 t=-\sqrt{6}-2
Kua oti te whārite te whakatau.
t^{2}+4t+1=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}+4t+1-1=3-1
Me tango 1 mai i ngā taha e rua o te whārite.
t^{2}+4t=3-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
t^{2}+4t=2
Tango 1 mai i 3.
t^{2}+4t+2^{2}=2+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+4t+4=2+4
Pūrua 2.
t^{2}+4t+4=6
Tāpiri 2 ki te 4.
\left(t+2\right)^{2}=6
Tauwehea t^{2}+4t+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+2\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+2=\sqrt{6} t+2=-\sqrt{6}
Whakarūnātia.
t=\sqrt{6}-2 t=-\sqrt{6}-2
Me tango 2 mai i ngā taha e rua o te whārite.
t^{2}+4t+1=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t^{2}+4t+1-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
t^{2}+4t+1-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
t^{2}+4t-2=0
Tango 3 mai i 1.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-2\right)}}{2}
Pūrua 4.
t=\frac{-4±\sqrt{16+8}}{2}
Whakareatia -4 ki te -2.
t=\frac{-4±\sqrt{24}}{2}
Tāpiri 16 ki te 8.
t=\frac{-4±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
t=\frac{2\sqrt{6}-4}{2}
Nā, me whakaoti te whārite t=\frac{-4±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{6}.
t=\sqrt{6}-2
Whakawehe -4+2\sqrt{6} ki te 2.
t=\frac{-2\sqrt{6}-4}{2}
Nā, me whakaoti te whārite t=\frac{-4±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i -4.
t=-\sqrt{6}-2
Whakawehe -4-2\sqrt{6} ki te 2.
t=\sqrt{6}-2 t=-\sqrt{6}-2
Kua oti te whārite te whakatau.
t^{2}+4t+1=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}+4t+1-1=3-1
Me tango 1 mai i ngā taha e rua o te whārite.
t^{2}+4t=3-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
t^{2}+4t=2
Tango 1 mai i 3.
t^{2}+4t+2^{2}=2+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+4t+4=2+4
Pūrua 2.
t^{2}+4t+4=6
Tāpiri 2 ki te 4.
\left(t+2\right)^{2}=6
Tauwehea t^{2}+4t+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+2\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+2=\sqrt{6} t+2=-\sqrt{6}
Whakarūnātia.
t=\sqrt{6}-2 t=-\sqrt{6}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}