Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}+3t-3t=4
Tangohia te 3t mai i ngā taha e rua.
t^{2}=4
Pahekotia te 3t me -3t, ka 0.
t^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
\left(t-2\right)\left(t+2\right)=0
Whakaarohia te t^{2}-4. Tuhia anō te t^{2}-4 hei t^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=2 t=-2
Hei kimi otinga whārite, me whakaoti te t-2=0 me te t+2=0.
t^{2}+3t-3t=4
Tangohia te 3t mai i ngā taha e rua.
t^{2}=4
Pahekotia te 3t me -3t, ka 0.
t=2 t=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t^{2}+3t-3t=4
Tangohia te 3t mai i ngā taha e rua.
t^{2}=4
Pahekotia te 3t me -3t, ka 0.
t^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Pūrua 0.
t=\frac{0±\sqrt{16}}{2}
Whakareatia -4 ki te -4.
t=\frac{0±4}{2}
Tuhia te pūtakerua o te 16.
t=2
Nā, me whakaoti te whārite t=\frac{0±4}{2} ina he tāpiri te ±. Whakawehe 4 ki te 2.
t=-2
Nā, me whakaoti te whārite t=\frac{0±4}{2} ina he tango te ±. Whakawehe -4 ki te 2.
t=2 t=-2
Kua oti te whārite te whakatau.