Whakaoti mō t
t=-8
t=-3
Tohaina
Kua tāruatia ki te papatopenga
a+b=11 ab=24
Hei whakaoti i te whārite, whakatauwehea te t^{2}+11t+24 mā te whakamahi i te tātai t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=3 b=8
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(t+3\right)\left(t+8\right)
Me tuhi anō te kīanga whakatauwehe \left(t+a\right)\left(t+b\right) mā ngā uara i tātaihia.
t=-3 t=-8
Hei kimi otinga whārite, me whakaoti te t+3=0 me te t+8=0.
a+b=11 ab=1\times 24=24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=3 b=8
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(t^{2}+3t\right)+\left(8t+24\right)
Tuhia anō te t^{2}+11t+24 hei \left(t^{2}+3t\right)+\left(8t+24\right).
t\left(t+3\right)+8\left(t+3\right)
Tauwehea te t i te tuatahi me te 8 i te rōpū tuarua.
\left(t+3\right)\left(t+8\right)
Whakatauwehea atu te kīanga pātahi t+3 mā te whakamahi i te āhuatanga tātai tohatoha.
t=-3 t=-8
Hei kimi otinga whārite, me whakaoti te t+3=0 me te t+8=0.
t^{2}+11t+24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-11±\sqrt{11^{2}-4\times 24}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 11 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-11±\sqrt{121-4\times 24}}{2}
Pūrua 11.
t=\frac{-11±\sqrt{121-96}}{2}
Whakareatia -4 ki te 24.
t=\frac{-11±\sqrt{25}}{2}
Tāpiri 121 ki te -96.
t=\frac{-11±5}{2}
Tuhia te pūtakerua o te 25.
t=-\frac{6}{2}
Nā, me whakaoti te whārite t=\frac{-11±5}{2} ina he tāpiri te ±. Tāpiri -11 ki te 5.
t=-3
Whakawehe -6 ki te 2.
t=-\frac{16}{2}
Nā, me whakaoti te whārite t=\frac{-11±5}{2} ina he tango te ±. Tango 5 mai i -11.
t=-8
Whakawehe -16 ki te 2.
t=-3 t=-8
Kua oti te whārite te whakatau.
t^{2}+11t+24=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}+11t+24-24=-24
Me tango 24 mai i ngā taha e rua o te whārite.
t^{2}+11t=-24
Mā te tango i te 24 i a ia ake anō ka toe ko te 0.
t^{2}+11t+\left(\frac{11}{2}\right)^{2}=-24+\left(\frac{11}{2}\right)^{2}
Whakawehea te 11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{2}. Nā, tāpiria te pūrua o te \frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+11t+\frac{121}{4}=-24+\frac{121}{4}
Pūruatia \frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+11t+\frac{121}{4}=\frac{25}{4}
Tāpiri -24 ki te \frac{121}{4}.
\left(t+\frac{11}{2}\right)^{2}=\frac{25}{4}
Tauwehea t^{2}+11t+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{11}{2}=\frac{5}{2} t+\frac{11}{2}=-\frac{5}{2}
Whakarūnātia.
t=-3 t=-8
Me tango \frac{11}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}