Whakaoti mō t
t = \frac{20000}{12769} = 1\frac{7231}{12769} \approx 1.566293367
t=0
Tohaina
Kua tāruatia ki te papatopenga
t-0.63845t^{2}=0
Tangohia te 0.63845t^{2} mai i ngā taha e rua.
t\left(1-0.63845t\right)=0
Tauwehea te t.
t=0 t=\frac{20000}{12769}
Hei kimi otinga whārite, me whakaoti te t=0 me te 1-\frac{12769t}{20000}=0.
t-0.63845t^{2}=0
Tangohia te 0.63845t^{2} mai i ngā taha e rua.
-0.63845t^{2}+t=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-1±\sqrt{1^{2}}}{2\left(-0.63845\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -0.63845 mō a, 1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±1}{2\left(-0.63845\right)}
Tuhia te pūtakerua o te 1^{2}.
t=\frac{-1±1}{-1.2769}
Whakareatia 2 ki te -0.63845.
t=\frac{0}{-1.2769}
Nā, me whakaoti te whārite t=\frac{-1±1}{-1.2769} ina he tāpiri te ±. Tāpiri -1 ki te 1.
t=0
Whakawehe 0 ki te -1.2769 mā te whakarea 0 ki te tau huripoki o -1.2769.
t=-\frac{2}{-1.2769}
Nā, me whakaoti te whārite t=\frac{-1±1}{-1.2769} ina he tango te ±. Tango 1 mai i -1.
t=\frac{20000}{12769}
Whakawehe -2 ki te -1.2769 mā te whakarea -2 ki te tau huripoki o -1.2769.
t=0 t=\frac{20000}{12769}
Kua oti te whārite te whakatau.
t-0.63845t^{2}=0
Tangohia te 0.63845t^{2} mai i ngā taha e rua.
-0.63845t^{2}+t=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-0.63845t^{2}+t}{-0.63845}=\frac{0}{-0.63845}
Whakawehea ngā taha e rua o te whārite ki te -0.63845, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t^{2}+\frac{1}{-0.63845}t=\frac{0}{-0.63845}
Mā te whakawehe ki te -0.63845 ka wetekia te whakareanga ki te -0.63845.
t^{2}-\frac{20000}{12769}t=\frac{0}{-0.63845}
Whakawehe 1 ki te -0.63845 mā te whakarea 1 ki te tau huripoki o -0.63845.
t^{2}-\frac{20000}{12769}t=0
Whakawehe 0 ki te -0.63845 mā te whakarea 0 ki te tau huripoki o -0.63845.
t^{2}-\frac{20000}{12769}t+\left(-\frac{10000}{12769}\right)^{2}=\left(-\frac{10000}{12769}\right)^{2}
Whakawehea te -\frac{20000}{12769}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{10000}{12769}. Nā, tāpiria te pūrua o te -\frac{10000}{12769} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{20000}{12769}t+\frac{100000000}{163047361}=\frac{100000000}{163047361}
Pūruatia -\frac{10000}{12769} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t-\frac{10000}{12769}\right)^{2}=\frac{100000000}{163047361}
Tauwehea t^{2}-\frac{20000}{12769}t+\frac{100000000}{163047361}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{10000}{12769}\right)^{2}}=\sqrt{\frac{100000000}{163047361}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{10000}{12769}=\frac{10000}{12769} t-\frac{10000}{12769}=-\frac{10000}{12769}
Whakarūnātia.
t=\frac{20000}{12769} t=0
Me tāpiri \frac{10000}{12769} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}