Whakaoti mō t
t=-\frac{\sqrt{15}}{5}\approx -0.774596669
Tautapa t
t≔-\frac{\sqrt{15}}{5}
Tohaina
Kua tāruatia ki te papatopenga
t=\frac{-10}{\frac{50}{\sqrt{15}}}
Tangohia te 300 i te 290, ka -10.
t=\frac{-10}{\frac{50\sqrt{15}}{\left(\sqrt{15}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{50}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
t=\frac{-10}{\frac{50\sqrt{15}}{15}}
Ko te pūrua o \sqrt{15} ko 15.
t=\frac{-10}{\frac{10}{3}\sqrt{15}}
Whakawehea te 50\sqrt{15} ki te 15, kia riro ko \frac{10}{3}\sqrt{15}.
t=\frac{-10\sqrt{15}}{\frac{10}{3}\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{-10}{\frac{10}{3}\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
t=\frac{-10\sqrt{15}}{\frac{10}{3}\times 15}
Ko te pūrua o \sqrt{15} ko 15.
t=\frac{-2\sqrt{15}}{3\times \frac{10}{3}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
t=\frac{-2\sqrt{15}}{10}
Me whakakore te 3 me te 3.
t=-\frac{1}{5}\sqrt{15}
Whakawehea te -2\sqrt{15} ki te 10, kia riro ko -\frac{1}{5}\sqrt{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}