Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image
Tautapa t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t=\frac{-10}{\frac{50}{\sqrt{15}}}
Tangohia te 300 i te 290, ka -10.
t=\frac{-10}{\frac{50\sqrt{15}}{\left(\sqrt{15}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{50}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
t=\frac{-10}{\frac{50\sqrt{15}}{15}}
Ko te pūrua o \sqrt{15} ko 15.
t=\frac{-10}{\frac{10}{3}\sqrt{15}}
Whakawehea te 50\sqrt{15} ki te 15, kia riro ko \frac{10}{3}\sqrt{15}.
t=\frac{-10\sqrt{15}}{\frac{10}{3}\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{-10}{\frac{10}{3}\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
t=\frac{-10\sqrt{15}}{\frac{10}{3}\times 15}
Ko te pūrua o \sqrt{15} ko 15.
t=\frac{-2\sqrt{15}}{3\times \frac{10}{3}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
t=\frac{-2\sqrt{15}}{10}
Me whakakore te 3 me te 3.
t=-\frac{1}{5}\sqrt{15}
Whakawehea te -2\sqrt{15} ki te 10, kia riro ko -\frac{1}{5}\sqrt{15}.