Whakaoti mō s
s = \frac{21 \sqrt{9859002}}{10} \approx 6593.800028815
s = -\frac{21 \sqrt{9859002}}{10} \approx -6593.800028815
Tohaina
Kua tāruatia ki te papatopenga
s^{2}=629298\times \frac{6909}{100}
Whakareatia te s ki te s, ka s^{2}.
s^{2}=\frac{629298\times 6909}{100}
Tuhia te 629298\times \frac{6909}{100} hei hautanga kotahi.
s^{2}=\frac{4347819882}{100}
Whakareatia te 629298 ki te 6909, ka 4347819882.
s^{2}=\frac{2173909941}{50}
Whakahekea te hautanga \frac{4347819882}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
s=\frac{21\sqrt{9859002}}{10} s=-\frac{21\sqrt{9859002}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s^{2}=629298\times \frac{6909}{100}
Whakareatia te s ki te s, ka s^{2}.
s^{2}=\frac{629298\times 6909}{100}
Tuhia te 629298\times \frac{6909}{100} hei hautanga kotahi.
s^{2}=\frac{4347819882}{100}
Whakareatia te 629298 ki te 6909, ka 4347819882.
s^{2}=\frac{2173909941}{50}
Whakahekea te hautanga \frac{4347819882}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
s^{2}-\frac{2173909941}{50}=0
Tangohia te \frac{2173909941}{50} mai i ngā taha e rua.
s=\frac{0±\sqrt{0^{2}-4\left(-\frac{2173909941}{50}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{2173909941}{50} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\left(-\frac{2173909941}{50}\right)}}{2}
Pūrua 0.
s=\frac{0±\sqrt{\frac{4347819882}{25}}}{2}
Whakareatia -4 ki te -\frac{2173909941}{50}.
s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2}
Tuhia te pūtakerua o te \frac{4347819882}{25}.
s=\frac{21\sqrt{9859002}}{10}
Nā, me whakaoti te whārite s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2} ina he tāpiri te ±.
s=-\frac{21\sqrt{9859002}}{10}
Nā, me whakaoti te whārite s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2} ina he tango te ±.
s=\frac{21\sqrt{9859002}}{10} s=-\frac{21\sqrt{9859002}}{10}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}