Tīpoka ki ngā ihirangi matua
Whakaoti mō s
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

s^{2}=629298\times \frac{6909}{100}
Whakareatia te s ki te s, ka s^{2}.
s^{2}=\frac{629298\times 6909}{100}
Tuhia te 629298\times \frac{6909}{100} hei hautanga kotahi.
s^{2}=\frac{4347819882}{100}
Whakareatia te 629298 ki te 6909, ka 4347819882.
s^{2}=\frac{2173909941}{50}
Whakahekea te hautanga \frac{4347819882}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
s=\frac{21\sqrt{9859002}}{10} s=-\frac{21\sqrt{9859002}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s^{2}=629298\times \frac{6909}{100}
Whakareatia te s ki te s, ka s^{2}.
s^{2}=\frac{629298\times 6909}{100}
Tuhia te 629298\times \frac{6909}{100} hei hautanga kotahi.
s^{2}=\frac{4347819882}{100}
Whakareatia te 629298 ki te 6909, ka 4347819882.
s^{2}=\frac{2173909941}{50}
Whakahekea te hautanga \frac{4347819882}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
s^{2}-\frac{2173909941}{50}=0
Tangohia te \frac{2173909941}{50} mai i ngā taha e rua.
s=\frac{0±\sqrt{0^{2}-4\left(-\frac{2173909941}{50}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{2173909941}{50} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\left(-\frac{2173909941}{50}\right)}}{2}
Pūrua 0.
s=\frac{0±\sqrt{\frac{4347819882}{25}}}{2}
Whakareatia -4 ki te -\frac{2173909941}{50}.
s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2}
Tuhia te pūtakerua o te \frac{4347819882}{25}.
s=\frac{21\sqrt{9859002}}{10}
Nā, me whakaoti te whārite s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2} ina he tāpiri te ±.
s=-\frac{21\sqrt{9859002}}{10}
Nā, me whakaoti te whārite s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2} ina he tango te ±.
s=\frac{21\sqrt{9859002}}{10} s=-\frac{21\sqrt{9859002}}{10}
Kua oti te whārite te whakatau.