Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t\left(-t-1\right)
Tauwehea te t.
-t^{2}-t=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-1\right)±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
t=\frac{1±1}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
t=\frac{1±1}{-2}
Whakareatia 2 ki te -1.
t=\frac{2}{-2}
Nā, me whakaoti te whārite t=\frac{1±1}{-2} ina he tāpiri te ±. Tāpiri 1 ki te 1.
t=-1
Whakawehe 2 ki te -2.
t=\frac{0}{-2}
Nā, me whakaoti te whārite t=\frac{1±1}{-2} ina he tango te ±. Tango 1 mai i 1.
t=0
Whakawehe 0 ki te -2.
-t^{2}-t=-\left(t-\left(-1\right)\right)t
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te 0 mō te x_{2}.
-t^{2}-t=-\left(t+1\right)t
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.