Tauwehe
-t\left(t+1\right)
Aromātai
-t\left(t+1\right)
Tohaina
Kua tāruatia ki te papatopenga
t\left(-t-1\right)
Tauwehea te t.
-t^{2}-t=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-1\right)±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
t=\frac{1±1}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
t=\frac{1±1}{-2}
Whakareatia 2 ki te -1.
t=\frac{2}{-2}
Nā, me whakaoti te whārite t=\frac{1±1}{-2} ina he tāpiri te ±. Tāpiri 1 ki te 1.
t=-1
Whakawehe 2 ki te -2.
t=\frac{0}{-2}
Nā, me whakaoti te whārite t=\frac{1±1}{-2} ina he tango te ±. Tango 1 mai i 1.
t=0
Whakawehe 0 ki te -2.
-t^{2}-t=-\left(t-\left(-1\right)\right)t
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te 0 mō te x_{2}.
-t^{2}-t=-\left(t+1\right)t
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}