Whakaoti mō s (complex solution)
\left\{\begin{matrix}s=\frac{x}{\epsilon }\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\s\in \mathrm{C}\text{, }&t=0\text{ and }\epsilon \neq 0\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō t (complex solution)
\left\{\begin{matrix}t=0\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\t\in \mathrm{C}\text{, }&s\epsilon \neq 0\text{ and }x=s\epsilon \end{matrix}\right.
Whakaoti mō s
\left\{\begin{matrix}s=\frac{x}{\epsilon }\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\s\in \mathrm{R}\text{, }&t=0\text{ and }\epsilon \neq 0\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō t
\left\{\begin{matrix}t=0\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\t\in \mathrm{R}\text{, }&s\epsilon \neq 0\text{ and }x=s\epsilon \end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\epsilon \times \frac{s}{x}t=t
Whakareatia ngā taha e rua o te whārite ki te \epsilon .
\frac{\epsilon s}{x}t=t
Tuhia te \epsilon \times \frac{s}{x} hei hautanga kotahi.
\frac{\epsilon st}{x}=t
Tuhia te \frac{\epsilon s}{x}t hei hautanga kotahi.
\epsilon st=tx
Whakareatia ngā taha e rua o te whārite ki te x.
t\epsilon s=tx
He hanga arowhānui tō te whārite.
\frac{t\epsilon s}{t\epsilon }=\frac{tx}{t\epsilon }
Whakawehea ngā taha e rua ki te \epsilon t.
s=\frac{tx}{t\epsilon }
Mā te whakawehe ki te \epsilon t ka wetekia te whakareanga ki te \epsilon t.
s=\frac{x}{\epsilon }
Whakawehe tx ki te \epsilon t.
\epsilon \times \frac{s}{x}t=t
Whakareatia ngā taha e rua o te whārite ki te \epsilon .
\frac{\epsilon s}{x}t=t
Tuhia te \epsilon \times \frac{s}{x} hei hautanga kotahi.
\frac{\epsilon st}{x}=t
Tuhia te \frac{\epsilon s}{x}t hei hautanga kotahi.
\frac{\epsilon st}{x}-t=0
Tangohia te t mai i ngā taha e rua.
\frac{\epsilon st}{x}-\frac{tx}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia t ki te \frac{x}{x}.
\frac{\epsilon st-tx}{x}=0
Tā te mea he rite te tauraro o \frac{\epsilon st}{x} me \frac{tx}{x}, me tango rāua mā te tango i ō raua taurunga.
\epsilon st-tx=0
Whakareatia ngā taha e rua o te whārite ki te x.
\left(\epsilon s-x\right)t=0
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\left(s\epsilon -x\right)t=0
He hanga arowhānui tō te whārite.
t=0
Whakawehe 0 ki te s\epsilon -x.
\epsilon \times \frac{s}{x}t=t
Whakareatia ngā taha e rua o te whārite ki te \epsilon .
\frac{\epsilon s}{x}t=t
Tuhia te \epsilon \times \frac{s}{x} hei hautanga kotahi.
\frac{\epsilon st}{x}=t
Tuhia te \frac{\epsilon s}{x}t hei hautanga kotahi.
\epsilon st=tx
Whakareatia ngā taha e rua o te whārite ki te x.
t\epsilon s=tx
He hanga arowhānui tō te whārite.
\frac{t\epsilon s}{t\epsilon }=\frac{tx}{t\epsilon }
Whakawehea ngā taha e rua ki te \epsilon t.
s=\frac{tx}{t\epsilon }
Mā te whakawehe ki te \epsilon t ka wetekia te whakareanga ki te \epsilon t.
s=\frac{x}{\epsilon }
Whakawehe tx ki te \epsilon t.
\epsilon \times \frac{s}{x}t=t
Whakareatia ngā taha e rua o te whārite ki te \epsilon .
\frac{\epsilon s}{x}t=t
Tuhia te \epsilon \times \frac{s}{x} hei hautanga kotahi.
\frac{\epsilon st}{x}=t
Tuhia te \frac{\epsilon s}{x}t hei hautanga kotahi.
\frac{\epsilon st}{x}-t=0
Tangohia te t mai i ngā taha e rua.
\frac{\epsilon st}{x}-\frac{tx}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia t ki te \frac{x}{x}.
\frac{\epsilon st-tx}{x}=0
Tā te mea he rite te tauraro o \frac{\epsilon st}{x} me \frac{tx}{x}, me tango rāua mā te tango i ō raua taurunga.
\epsilon st-tx=0
Whakareatia ngā taha e rua o te whārite ki te x.
\left(\epsilon s-x\right)t=0
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\left(s\epsilon -x\right)t=0
He hanga arowhānui tō te whārite.
t=0
Whakawehe 0 ki te s\epsilon -x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}