Tauwehe
\left(s-5\right)\left(s-4\right)
Aromātai
\left(s-5\right)\left(s-4\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=1\times 20=20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei s^{2}+as+bs+20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-20 -2,-10 -4,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
-1-20=-21 -2-10=-12 -4-5=-9
Tātaihia te tapeke mō ia takirua.
a=-5 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(s^{2}-5s\right)+\left(-4s+20\right)
Tuhia anō te s^{2}-9s+20 hei \left(s^{2}-5s\right)+\left(-4s+20\right).
s\left(s-5\right)-4\left(s-5\right)
Tauwehea te s i te tuatahi me te -4 i te rōpū tuarua.
\left(s-5\right)\left(s-4\right)
Whakatauwehea atu te kīanga pātahi s-5 mā te whakamahi i te āhuatanga tātai tohatoha.
s^{2}-9s+20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 20}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-9\right)±\sqrt{81-4\times 20}}{2}
Pūrua -9.
s=\frac{-\left(-9\right)±\sqrt{81-80}}{2}
Whakareatia -4 ki te 20.
s=\frac{-\left(-9\right)±\sqrt{1}}{2}
Tāpiri 81 ki te -80.
s=\frac{-\left(-9\right)±1}{2}
Tuhia te pūtakerua o te 1.
s=\frac{9±1}{2}
Ko te tauaro o -9 ko 9.
s=\frac{10}{2}
Nā, me whakaoti te whārite s=\frac{9±1}{2} ina he tāpiri te ±. Tāpiri 9 ki te 1.
s=5
Whakawehe 10 ki te 2.
s=\frac{8}{2}
Nā, me whakaoti te whārite s=\frac{9±1}{2} ina he tango te ±. Tango 1 mai i 9.
s=4
Whakawehe 8 ki te 2.
s^{2}-9s+20=\left(s-5\right)\left(s-4\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te 4 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}