Whakaoti mō s
s=4
s=9
Tohaina
Kua tāruatia ki te papatopenga
a+b=-13 ab=36
Hei whakaoti i te whārite, whakatauwehea te s^{2}-13s+36 mā te whakamahi i te tātai s^{2}+\left(a+b\right)s+ab=\left(s+a\right)\left(s+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(s-9\right)\left(s-4\right)
Me tuhi anō te kīanga whakatauwehe \left(s+a\right)\left(s+b\right) mā ngā uara i tātaihia.
s=9 s=4
Hei kimi otinga whārite, me whakaoti te s-9=0 me te s-4=0.
a+b=-13 ab=1\times 36=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei s^{2}+as+bs+36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(s^{2}-9s\right)+\left(-4s+36\right)
Tuhia anō te s^{2}-13s+36 hei \left(s^{2}-9s\right)+\left(-4s+36\right).
s\left(s-9\right)-4\left(s-9\right)
Tauwehea te s i te tuatahi me te -4 i te rōpū tuarua.
\left(s-9\right)\left(s-4\right)
Whakatauwehea atu te kīanga pātahi s-9 mā te whakamahi i te āhuatanga tātai tohatoha.
s=9 s=4
Hei kimi otinga whārite, me whakaoti te s-9=0 me te s-4=0.
s^{2}-13s+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 36}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -13 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-13\right)±\sqrt{169-4\times 36}}{2}
Pūrua -13.
s=\frac{-\left(-13\right)±\sqrt{169-144}}{2}
Whakareatia -4 ki te 36.
s=\frac{-\left(-13\right)±\sqrt{25}}{2}
Tāpiri 169 ki te -144.
s=\frac{-\left(-13\right)±5}{2}
Tuhia te pūtakerua o te 25.
s=\frac{13±5}{2}
Ko te tauaro o -13 ko 13.
s=\frac{18}{2}
Nā, me whakaoti te whārite s=\frac{13±5}{2} ina he tāpiri te ±. Tāpiri 13 ki te 5.
s=9
Whakawehe 18 ki te 2.
s=\frac{8}{2}
Nā, me whakaoti te whārite s=\frac{13±5}{2} ina he tango te ±. Tango 5 mai i 13.
s=4
Whakawehe 8 ki te 2.
s=9 s=4
Kua oti te whārite te whakatau.
s^{2}-13s+36=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
s^{2}-13s+36-36=-36
Me tango 36 mai i ngā taha e rua o te whārite.
s^{2}-13s=-36
Mā te tango i te 36 i a ia ake anō ka toe ko te 0.
s^{2}-13s+\left(-\frac{13}{2}\right)^{2}=-36+\left(-\frac{13}{2}\right)^{2}
Whakawehea te -13, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{2}. Nā, tāpiria te pūrua o te -\frac{13}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
s^{2}-13s+\frac{169}{4}=-36+\frac{169}{4}
Pūruatia -\frac{13}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
s^{2}-13s+\frac{169}{4}=\frac{25}{4}
Tāpiri -36 ki te \frac{169}{4}.
\left(s-\frac{13}{2}\right)^{2}=\frac{25}{4}
Tauwehea s^{2}-13s+\frac{169}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{13}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s-\frac{13}{2}=\frac{5}{2} s-\frac{13}{2}=-\frac{5}{2}
Whakarūnātia.
s=9 s=4
Me tāpiri \frac{13}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}