Whakaoti mō d (complex solution)
\left\{\begin{matrix}d=\frac{2s-gt^{2}}{2tv_{0}}\text{, }&t\neq 0\text{ and }v_{0}\neq 0\\d\in \mathrm{C}\text{, }&\left(s=0\text{ and }t=0\right)\text{ or }\left(s=\frac{gt^{2}}{2}\text{ and }v_{0}=0\text{ and }t\neq 0\right)\end{matrix}\right.
Whakaoti mō g (complex solution)
\left\{\begin{matrix}g=-\frac{2\left(dtv_{0}-s\right)}{t^{2}}\text{, }&t\neq 0\\g\in \mathrm{C}\text{, }&s=0\text{ and }t=0\end{matrix}\right.
Whakaoti mō d
\left\{\begin{matrix}d=\frac{2s-gt^{2}}{2tv_{0}}\text{, }&t\neq 0\text{ and }v_{0}\neq 0\\d\in \mathrm{R}\text{, }&\left(s=0\text{ and }t=0\right)\text{ or }\left(s=\frac{gt^{2}}{2}\text{ and }v_{0}=0\text{ and }t\neq 0\right)\end{matrix}\right.
Whakaoti mō g
\left\{\begin{matrix}g=-\frac{2\left(dtv_{0}-s\right)}{t^{2}}\text{, }&t\neq 0\\g\in \mathrm{R}\text{, }&s=0\text{ and }t=0\end{matrix}\right.
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
s = \frac { 1 } { 2 } g t ^ { 2 } + v _ { 0 } t \quad d
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}gt^{2}+v_{0}td=s
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
v_{0}td=s-\frac{1}{2}gt^{2}
Tangohia te \frac{1}{2}gt^{2} mai i ngā taha e rua.
tv_{0}d=-\frac{gt^{2}}{2}+s
He hanga arowhānui tō te whārite.
\frac{tv_{0}d}{tv_{0}}=\frac{-\frac{gt^{2}}{2}+s}{tv_{0}}
Whakawehea ngā taha e rua ki te v_{0}t.
d=\frac{-\frac{gt^{2}}{2}+s}{tv_{0}}
Mā te whakawehe ki te v_{0}t ka wetekia te whakareanga ki te v_{0}t.
\frac{1}{2}gt^{2}+v_{0}td=s
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{2}gt^{2}=s-v_{0}td
Tangohia te v_{0}td mai i ngā taha e rua.
\frac{1}{2}gt^{2}=s-dtv_{0}
Whakaraupapatia anō ngā kīanga tau.
\frac{t^{2}}{2}g=s-dtv_{0}
He hanga arowhānui tō te whārite.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(s-dtv_{0}\right)}{t^{2}}
Whakawehea ngā taha e rua ki te \frac{1}{2}t^{2}.
g=\frac{2\left(s-dtv_{0}\right)}{t^{2}}
Mā te whakawehe ki te \frac{1}{2}t^{2} ka wetekia te whakareanga ki te \frac{1}{2}t^{2}.
\frac{1}{2}gt^{2}+v_{0}td=s
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
v_{0}td=s-\frac{1}{2}gt^{2}
Tangohia te \frac{1}{2}gt^{2} mai i ngā taha e rua.
tv_{0}d=-\frac{gt^{2}}{2}+s
He hanga arowhānui tō te whārite.
\frac{tv_{0}d}{tv_{0}}=\frac{-\frac{gt^{2}}{2}+s}{tv_{0}}
Whakawehea ngā taha e rua ki te v_{0}t.
d=\frac{-\frac{gt^{2}}{2}+s}{tv_{0}}
Mā te whakawehe ki te v_{0}t ka wetekia te whakareanga ki te v_{0}t.
\frac{1}{2}gt^{2}+v_{0}td=s
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{2}gt^{2}=s-v_{0}td
Tangohia te v_{0}td mai i ngā taha e rua.
\frac{1}{2}gt^{2}=s-dtv_{0}
Whakaraupapatia anō ngā kīanga tau.
\frac{t^{2}}{2}g=s-dtv_{0}
He hanga arowhānui tō te whārite.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(s-dtv_{0}\right)}{t^{2}}
Whakawehea ngā taha e rua ki te \frac{1}{2}t^{2}.
g=\frac{2\left(s-dtv_{0}\right)}{t^{2}}
Mā te whakawehe ki te \frac{1}{2}t^{2} ka wetekia te whakareanga ki te \frac{1}{2}t^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}